Skip to content

alisharifi2000/GeneticAlgorithmFeatureSelection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GeneticAlgorithmFeatureSelection

Feature Selection with Genetic Algorithm published in pypi.

Installation

from GeneticAlgorithmFeaturesSelection.GA import FeatureSelection

Example

The original example code can be found in test.py.

from sklearn.datasets import make_classification
import pandas as pd
from genetic_algoirthm.GA import GenticAlgorithmFeatureSelection

Define the sample classification dataset

x, y = make_classification(n_features=25, n_samples=1500, n_classes=4, n_clusters_per_class=3,
                           n_informative=4)

input data must be pandas dataframe. we split target and features.

columns = [f'f_{i}' for i in range(1, 26)]
features = pd.DataFrame(x, columns=columns)
target = pd.DataFrame(y, columns=['target'])

run feature selection

 FS = FeatureSelection(features=features, target=target, population_size=1000, elite_rate=0.25,
                       mut_rate=0.2, k_folds=4, fitness_alpha=0.85, tourn_size=30,
                       no_generation=120, method='DesicionTree', scoring='accuracy')
 FS.run()

see history

history = FS.history

for generation, detail in history.items():
    print(f'Generation :{generation}')
    print(f'best score: {detail["best_score"]}')
    print(f'features: {detail["selected_features"]}')

find best score and features in last generation

print(f'best score last generation :{GA.best_score}')
print(f'feature selected in last generation: {GA.selected_features}')

About

Feature Selection with Genetic Algorithm

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages