Skip to content

ambrish/machine-learning-adda

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning -- Practical Implementations

Python License Status

A complete, hands-on repository of Machine Learning algorithms implemented from scratch and with libraries such as NumPy, Pandas, and Scikit-learn.
Each chapter includes explanations, step-by-step logic, and real-world datasets to help you learn ML by doing.

🚀 Features

  • Fundamentals of Machine Learning implemented in Python\
  • Beginner-friendly, readable, fully commented code\
  • Real datasets for practical learning\
  • Covers both theory and implementation\
  • Easy to extend and contribute

📂 Repository Structure

Machine-Learning/
│
├── kNN/
│   ├── simple_knn.py
│   ├── dating_knn.py
│   └── digit_recognition_knn.py
│
├── Decision Tree/
│   ├── decision_tree.py
│   └── sklearn_decision_tree.py
│
├── Naive Bayes/
│   ├── bayes.py
│   ├── bayes-modify.py
│   └── nbc.py
│
├── Logistic/
│   ├── LogRegres.py
│   ├── LogRegres-gj.py
│   └── colicLogRegres.py
│
├── SVM/
│   ├── svm-simple.py
│   ├── svm-smo.py
│   ├── svmMLiA.py
│   └── svm-svc.py
│
├── AdaBoost/
│   ├── adaboost.py
│   ├── horse_adaboost.py
│   ├── sklearn_adaboost.py
│   └── ROC.py
│
├── Regression/
│   ├── regression_old.py
│   ├── abalone.py
│   ├── regression.py
│   └── lego.py
│
└── Regression Trees/
    └── regTrees.py

<<<<<<< HEAD


b0ea04c1d910f7678875fb03b6cb81eaaed4899c

🔧 Installation

git clone https://github.com/yourusername/Machine-Learning.git
cd Machine-Learning
pip install -r requirements.txt

▶️ How to Use

Run any algorithm directly:

python kNN/simple_knn.py
python Logistic/LogRegres.py
python SVM/svm-svc.py

📘 Chapters Overview

Chapter 2: K-Nearest Neighbors (KNN)

  • Simple KNN classifier\
  • Dating dataset classification\
  • Digit recognition

Chapter 3: Decision Trees

  • Loan prediction\
  • Contact lenses classification

Chapter 4: Naive Bayes

  • Comment filtering\
  • Spam filtering\
  • News classification

Chapter 5: Logistic Regression

  • Logistic regression from scratch\
  • Improved random gradient ascent\
  • Horse mortality prediction

Chapter 6: Support Vector Machines (SVM)

  • SMO algorithms\
  • Nonlinear SVM\
  • Scikit-learn SVC

Chapter 7: AdaBoost

  • Decision stump AdaBoost\
  • Hard dataset AdaBoost\
  • ROC plotting

Chapter 8: Linear Regression

  • Ordinary & Locally Weighted LR\
  • Abalone age prediction\
  • Stepwise regression\
  • Lego price prediction

Chapter 9: Regression Trees

  • CART regression tree\
  • Tree pruning

🤝 Contributing

  1. Fork the repository\
  2. Create a new branch\
  3. Commit your changes\
  4. Submit a pull request

📄 License

MIT License

⭐ Support

If you find this useful, please consider starring ⭐ the repository!

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published