Skip to content

Conversation

@punit-naik-amp
Copy link
Contributor

Setup Wizard Provider Selection & Redshift Integration Enhancements

Overview

This PR introduces comprehensive improvements to the setup wizard, enabling flexible provider combinations (Databricks + Redshift, Redshift + Databricks compute, etc.) and fixing critical bugs in multi-provider configurations. The changes support the full Redshift + Databricks integration flow end-to-end.

Branch: CHUCK-10-pr7-setup-wizard-provider-selection
Base: CHUCK-10-redshift
Changes: 53 files changed, 6,594 insertions(+), 997 deletions(-)
Commits: 29


🎯 Key Features

1. Enhanced Setup Wizard with Provider Selection

The wizard now supports explicit provider selection for data, compute, and LLM:

Setup Flow:
┌─────────────────────────────────────────────────────────────┐
│ 1. Amperity Auth                                             │
├─────────────────────────────────────────────────────────────┤
│ 2. Data Provider Selection                                   │
│    ├─ Databricks (Unity Catalog)                            │
│    └─ AWS Redshift                                          │
├─────────────────────────────────────────────────────────────┤
│ 3a. IF Databricks → Workspace URL + Token                   │
│ 3b. IF Redshift → AWS Profile + Region + Account ID +       │
│                    Cluster/Workgroup + S3 + IAM Role        │
├─────────────────────────────────────────────────────────────┤
│ 4. Compute Provider Selection                                │
│    └─ Databricks (required for both data providers)         │
├─────────────────────────────────────────────────────────────┤
│ 5. LLM Provider Selection                                    │
│    ├─ Databricks                                            │
│    └─ AWS Bedrock                                           │
├─────────────────────────────────────────────────────────────┤
│ 6. Model Selection (based on LLM provider)                   │
├─────────────────────────────────────────────────────────────┤
│ 7. Usage Tracking Consent                                    │
└─────────────────────────────────────────────────────────────┘

New wizard steps added:

  • DataProviderSelectionStep - Choose between Databricks or Redshift
  • ComputeProviderSelectionStep - Choose compute backend
  • AWSProfileInputStep - Configure AWS profile for Redshift
  • AWSRegionInputStep - Configure AWS region
  • AWSAccountIdInputStep - Configure AWS account ID (required for Redshift manifests)
  • RedshiftClusterSelectionStep - Select Redshift cluster or serverless workgroup
  • S3BucketInputStep - Configure S3 for Spark-Redshift connector
  • IAMRoleInputStep - Configure IAM role for Redshift access

2. Provider Abstraction & Dependency Injection

Introduced clean separation between data providers, compute providers, and storage providers:

# Before: Tightly coupled, hard-coded Databricks assumptions
client = DatabricksAPIClient(...)
compute = DatabricksComputeProvider(...)

# After: Flexible provider composition with dependency injection
data_provider = ProviderFactory.create_data_provider("redshift", config)
storage_provider = ProviderFactory.create_storage_provider("s3", config)
compute_provider = ProviderFactory.create_compute_provider(
    "databricks",
    config,
    storage_provider=storage_provider  # Injected dependency
)

Key abstractions:

  • IStorageProvider protocol - Abstract storage (S3, DBFS, Volumes)
  • Storage provider injection into compute providers
  • Provider detection utilities for automatic routing
  • Runtime-checkable protocols for proper type safety

3. Redshift-Specific Commands & Configuration

Added dedicated Redshift commands and configuration management:

New Commands:

  • /list-redshift-schemas - List Redshift schemas with database context
  • /select-redshift-schema - Select active Redshift database and schema
  • /redshift-status - Show current Redshift configuration

Configuration Management:

  • Automatic cleanup of incompatible config on provider switch
  • Proper persistence of AWS account ID, region, cluster info
  • Redshift-specific config fields (redshift_workgroup_name, redshift_iam_role, etc.)

4. Enhanced Stitch Integration for Redshift

Complete end-to-end Stitch support for Redshift data sources:

Redshift Stitch Flow:
┌──────────────────────────────────────────────────────────────┐
│ 1. Scan Redshift tables for PII (chuck-data)                 │
│    - Uses LLM to detect semantic tags                         │
│    - Stores tags in chuck_metadata.semantic_tags              │
└────────────────┬─────────────────────────────────────────────┘
                 ▼
┌──────────────────────────────────────────────────────────────┐
│ 2. Generate manifest JSON with semantic tags                 │
│    - Includes redshift_config with all connection details     │
│    - Includes aws_account_id for JDBC URL construction        │
│    - Uploads to S3 for Databricks job access                  │
└────────────────┬─────────────────────────────────────────────┘
                 ▼
┌──────────────────────────────────────────────────────────────┐
│ 3. Submit Stitch job to Databricks                           │
│    - Fetches init script from Amperity API                    │
│    - Uploads init script to S3                                │
│    - Submits job with manifest and init script paths          │
└────────────────┬─────────────────────────────────────────────┘
                 ▼
┌──────────────────────────────────────────────────────────────┐
│ 4. Stitch job processes Redshift data                        │
│    - Reads manifest from S3                                   │
│    - Connects to Redshift using Spark-Redshift connector      │
│    - Attaches semantic tags to DataFrame metadata             │
│    - Runs identity resolution                                 │
│    - Writes results back to Redshift                          │
└──────────────────────────────────────────────────────────────┘

Manifest generation improvements:

  • Proper redshift_config with all required fields
  • aws_account_id included for JDBC URL construction
  • Explicit data_provider and compute_provider fields
  • Support for both provisioned clusters and serverless workgroups

5. Storage Provider Abstraction

New storage abstraction for managing artifacts across backends:

class IStorageProvider(Protocol):
    """Protocol for storage backends (S3, DBFS, Volumes)"""

    def upload_file(self, local_path: str, remote_path: str) -> bool
    def download_file(self, remote_path: str, local_path: str) -> bool
    def exists(self, remote_path: str) -> bool
    def delete(self, remote_path: str) -> bool

Implementations:

  • S3StorageProvider - AWS S3 backend (for Redshift)
  • DBFSStorageProvider - Databricks DBFS (legacy)
  • VolumesStorageProvider - Unity Catalog Volumes (preferred for Databricks)

6. Provider-Aware Command Routing

Commands now automatically detect the active provider and route appropriately:

# Before: Commands assumed Databricks
def handle_command(client, **kwargs):
    catalogs = client.list_catalogs()  # Always Databricks

# After: Commands detect provider and route correctly
def handle_command(client, **kwargs):
    if is_redshift_client(client):
        databases = client.list_databases()  # Redshift
    else:
        catalogs = client.list_catalogs()   # Databricks

Provider detection:

  • is_redshift_client() - Check if client is RedshiftAPIClient
  • is_databricks_client() - Check if client is DatabricksAPIClient
  • Automatic routing in agent tool executor

🐛 Critical Bug Fixes

Bug #1: LLM Provider Selection with Redshift

Problem:
When using Redshift as data provider and Databricks as LLM provider, the wizard crashed with:

AttributeError: 'RedshiftAPIClient' object has no attribute 'list_models'

Root cause:
The wizard was passing service.client (RedshiftAPIClient) to DatabricksProvider, which expected a DatabricksAPIClient or None.

Fix:
Added type checking to only use service.client if it's a DatabricksAPIClient:

# Added in LLMProviderSelectionStep and ModelSelectionStep
service = get_chuck_service()
databricks_client = None

if service and service.client and isinstance(service.client, DatabricksAPIClient):
    databricks_client = service.client  # Only use if correct type

databricks_provider = DatabricksProvider(
    workspace_url=state.workspace_url,
    token=state.token,
    client=databricks_client  # None if data provider is Redshift
)

Bug #2: ConfigManager Not Saving Dynamic Fields

Problem:
aws_account_id and other dynamic fields were silently dropped when saving config, even though ChuckConfig has extra="allow".

Root cause:
ConfigManager.update() had a hasattr() check that prevented non-schema fields from being set:

# Old buggy code
for key, value in kwargs.items():
    if hasattr(config, key):  # Prevented dynamic fields!
        setattr(config, key, value)

Fix:
Removed the hasattr() check to allow all fields:

# Fixed code
for key, value in kwargs.items():
    setattr(config, key, value)  # Now accepts all fields

Impact:

  • aws_account_id now properly saved to config
  • Included in generated Redshift manifests
  • All other dynamic config fields also work correctly

📊 Test Coverage

New test files:

  • tests/unit/commands/wizard/test_state.py - 401 lines, comprehensive wizard state tests
  • tests/unit/commands/wizard/test_steps.py - 589 lines, wizard step validation
  • tests/unit/test_workspace_and_init_scripts.py - 446 lines, workspace APIs and protocols

Updated test coverage:

  • Setup wizard tests updated for new flow
  • Stitch integration tests updated for Redshift support
  • Compute provider tests updated for dependency injection
  • Service tests updated for provider-aware routing

Test isolation improvements:

  • Tests now use temporary config files to avoid modifying user's ~/.chuck_config.json
  • Proper cleanup of test artifacts
  • Mock providers for unit testing

🔄 Migration Impact

Breaking Changes

None - all changes are backward compatible.

New Required Fields for Redshift Manifests

Generated manifests now include:

{
  "settings": {
    "data_provider": "redshift",
    "compute_provider": "databricks",
    "redshift_config": {
      "database": "dev",
      "schema": "public",
      "workgroup_name": "my-workgroup",
      "region": "us-west-2",
      "aws_account_id": "123456789012"  // NEW - required
    },
    "s3_temp_dir": "s3://bucket/temp/",
    "redshift_iam_role": "arn:aws:iam::123456789012:role/Role"
  }
}

Config File Changes

New config fields (all optional, added only when Redshift is selected):

  • aws_account_id - AWS account ID for Redshift
  • aws_region - AWS region
  • aws_profile - AWS profile name
  • redshift_workgroup_name - Serverless workgroup name
  • redshift_cluster_identifier - Provisioned cluster identifier
  • redshift_iam_role - IAM role ARN
  • redshift_s3_temp_dir - S3 temp directory for Spark-Redshift
  • s3_bucket - S3 bucket for artifacts

📁 Key File Changes

Core Setup & Configuration (10 files)

  • chuck_data/commands/setup_wizard.py - Orchestrator for new wizard flow
  • chuck_data/commands/wizard/steps.py - All wizard step implementations (+666 lines)
  • chuck_data/commands/wizard/state.py - Wizard state management (+139 lines)
  • chuck_data/config.py - Config manager with dynamic field support (+101 lines)
  • chuck_data/service.py - Provider-aware service initialization (+116 lines)

Provider Abstraction (8 files)

  • chuck_data/provider_factory.py - Factory for creating providers (+43 lines)
  • chuck_data/compute_providers/databricks.py - Databricks with storage injection
  • chuck_data/compute_providers/emr.py - EMR with storage support
  • chuck_data/data_providers/utils.py - Provider detection utilities (NEW, 172 lines)
  • chuck_data/storage/manifest.py - Manifest generation for Redshift (NEW, 378 lines)

Redshift Integration (5 files)

  • chuck_data/clients/redshift.py - Enhanced Redshift client (+114 lines)
  • chuck_data/commands/list_redshift_schemas.py - NEW command (118 lines)
  • chuck_data/commands/redshift_schema_selection.py - NEW command (183 lines)
  • chuck_data/commands/redshift_status.py - NEW command (98 lines)
  • chuck_data/commands/setup_stitch.py - Full Redshift support (+1317 lines)

Client Enhancements (3 files)

  • chuck_data/clients/databricks.py - Workspace and init script APIs (+147 lines)
  • chuck_data/clients/amperity.py - Moved init script fetch here (+55 lines)
  • chuck_data/ui/tui.py - Provider-aware UI updates (+163 lines)

✅ Testing Checklist

  • Setup wizard completes successfully for Databricks data provider
  • Setup wizard completes successfully for Redshift data provider
  • Setup wizard properly saves aws_account_id to config
  • Mixed provider setup works (Redshift data + Databricks compute + Databricks LLM)
  • Mixed provider setup works (Redshift data + Databricks compute + Bedrock LLM)
  • Generated manifests include all required fields for Redshift
  • Stitch setup works end-to-end with Redshift
  • Provider detection correctly routes commands
  • Config cleanup happens when switching providers
  • All unit tests pass
  • Test isolation prevents modifying user config

🎬 Demo Flow

Complete Redshift + Databricks Setup

# 1. Run setup wizard
chuck> /setup

# Wizard flow:
# ✓ Amperity Auth (browser-based OAuth)
# ✓ Select Data Provider: AWS Redshift
# ✓ Enter AWS Profile: default
# ✓ Enter AWS Region: us-west-2
# ✓ Enter AWS Account ID: 123456789012
# ✓ Enter Redshift Workgroup: my-workgroup
# ✓ Enter S3 Bucket: my-bucket
# ✓ Enter IAM Role: arn:aws:iam::123456789012:role/RedshiftRole
# ✓ Select Compute Provider: Databricks
# ✓ Enter Workspace URL: https://my-workspace.databricks.com
# ✓ Enter Databricks Token: dapi***
# ✓ Select LLM Provider: Databricks
# ✓ Select Model: databricks-meta-llama-3-1-70b-instruct
# ✓ Usage Consent: yes

# 2. Check configuration
chuck> /redshift-status
✓ Data Provider: AWS Redshift
✓ Region: us-west-2
✓ Workgroup: my-workgroup
✓ Account ID: 123456789012

# 3. Select database and schema
chuck> /select-redshift-schema
# Lists databases, then schemas

# 4. Run Stitch setup
chuck> /setup-stitch
# Generates manifest, uploads to S3, submits Databricks job
✓ Manifest: s3://my-bucket/chuck/manifests/redshift_dev_public_20241218.json
✓ Job submitted: run-id 12345

📝 Commit History Summary

Provider Abstraction & Architecture (9 commits)

  • Add storage provider abstraction
  • Integrate storage providers into compute providers
  • Make commands provider-aware
  • Add provider detection utilities
  • Make protocols runtime-checkable

Redshift Integration (8 commits)

  • Add Redshift-specific commands
  • Update setup_stitch for Redshift support
  • Add manifest generation with semantic tags
  • Flow AWS credentials through wizard
  • Add AWS account ID to config and manifests

Setup Wizard Enhancements (7 commits)

  • Add data provider selection step
  • Add AWS configuration steps (profile, region, account ID)
  • Add compute provider selection
  • Update wizard orchestration
  • Add comprehensive wizard tests

Bug Fixes & Quality (5 commits)

  • Fix ConfigManager dynamic field saving
  • Fix LLM provider selection with Redshift
  • Fix test isolation issues
  • Update all affected tests
  • Add explicit provider fields to manifests

🚀 Next Steps

After merge, the following work can proceed:

  1. End-to-end integration testing with real Redshift cluster
  2. Performance validation on large Redshift tables
  3. User documentation and guides
  4. EMR compute provider support (architecture is ready)

📚 Related Documentation

This commit enhances the setup wizard with improved AWS configuration
and consistent naming throughout the codebase.

**Changes:**
- Rename `computation_provider` to `compute_provider` across all files
  for consistency and clarity
- Add AWS_PROFILE_INPUT step to Redshift configuration flow
  - Captures AWS profile before region selection
  - Validates profile name format
  - Defaults to "default" if empty
  - Saves to configuration manager
- Update wizard flow for Redshift path:
  DATA_PROVIDER → AWS_PROFILE → AWS_REGION → CLUSTER → S3 → IAM → COMPUTE
- Add comprehensive unit test coverage:
  - 28 tests for state machine logic (test_state.py)
  - 37 tests for step handlers (test_steps.py)
  - All 65 new wizard tests passing
- Update existing integration tests to handle new compute provider
  selection step in Databricks path
- Fix DataProviderSelectionStep routing to use AWS_PROFILE_INPUT

**Test Results:**
- 883 tests passing (was 876)
- 7 additional tests added for new functionality
- All wizard-related tests updated and passing
Add @runtime_checkable decorator to ComputeProvider and DataProvider
protocols to enable isinstance() checks at runtime. Update provider
implementations to explicitly inherit from their protocols for better
type safety and clearer architecture.

Changes:
- Add @runtime_checkable to ComputeProvider protocol
- Add @runtime_checkable to DataProvider protocol
- DatabricksComputeProvider explicitly inherits from ComputeProvider
- EMRComputeProvider explicitly inherits from ComputeProvider
- DatabricksProviderAdapter explicitly inherits from DataProvider
- RedshiftProviderAdapter explicitly inherits from DataProvider
- Update docstrings to document protocol implementation
Implement provider detection utilities to identify client types at runtime
and enable proper command routing. Add Redshift-specific versions of schema
and status commands for better provider separation.

New files:
- data_providers/utils.py: Provider detection (get_provider_name_from_client, is_redshift_client)
- commands/list_redshift_schemas.py: Redshift schema listing
- commands/redshift_schema_selection.py: Redshift schema selection
- commands/redshift_status.py: Redshift status display

Changes:
- Export provider detection functions from data_providers/__init__.py
…lient

Refactor cluster init script fetching to AmperityAPIClient where it logically
belongs. This method calls the Amperity API and is not Databricks-specific.

Changes:
- Add fetch_amperity_job_init() method to AmperityAPIClient
- Remove fetch_amperity_job_init() from DatabricksAPIClient
- Method now returns both cluster-init script and job-id from API
- Update error handling with proper exception types
Introduce StorageProvider protocol to abstract artifact storage (manifests,
init scripts) across different backends. Enables using Databricks Volumes for
Unity Catalog data and S3 for Redshift data.

New files:
- storage/__init__.py: Module exports
- storage/provider.py: StorageProvider protocol
- storage/databricks_volume.py: DatabricksVolumeStorage implementation
- storage/s3.py: S3Storage implementation

This enables compute providers to automatically select the appropriate storage
backend based on the data provider type.
Update compute providers to use storage provider abstraction for uploading
manifests and init scripts. Auto-select storage backend based on data provider:
- Databricks data → Databricks Volumes storage
- Redshift data → S3 storage

Changes:
- DatabricksComputeProvider: Add storage_provider parameter, auto-select based on data_provider_type
- DatabricksComputeProvider: Use storage_provider.upload_file() instead of direct client calls
- Update prepare_stitch_job() to fetch init script from AmperityAPIClient
- EMRComputeProvider: Minor formatting updates
Update commands to detect and work with both Databricks and Redshift providers.
Commands now use is_redshift_client() to route to provider-specific logic.

Changes:
- list_tables: Support both Databricks Unity Catalog and Redshift
- list_schemas: Mark as Databricks-specific (provider="databricks")
- pii_tools: Update to use catalog_or_database_context parameter name
- bulk_tag_pii, scan_pii, tag_pii: Provider-aware error handling
- schema_selection, warehouse_selection, status, table: Provider detection
- __init__.py: Register new Redshift-specific commands

All commands now gracefully handle both provider types with appropriate
error messages and functionality.
…otocols

Created new test file test_workspace_and_init_scripts.py with 17 tests covering:

- DatabricksAPIClient workspace methods (mkdirs, import)
- Init script configuration in submit_job_run (volumes vs S3 format)
- AmperityAPIClient.fetch_amperity_job_init with success/error handling
- Protocol implementation verification for all providers
- Dependency injection pattern in setup_stitch handle_command
- Redshift S3 upload for init scripts

These tests verify the refactoring changes including protocol implementation,
method migration from DatabricksAPIClient to AmperityAPIClient, and proper
handling of init script storage across different providers.
Fixed 22 failing tests across multiple test files:

test_stitch_tools.py:
- Added AmperityAPIClient.fetch_amperity_job_init mocks to 10 tests
- Fixed test_missing_params to use case-insensitive error check

test_setup_stitch.py:
- Fixed 4 auto-confirm mode tests to verify direct API calls
  (databricks_client_stub.submit_job_run_calls) instead of compute provider mocks
- Tests now correctly validate policy_id parameter passing in auto-confirm mode

test_service.py:
- Added workspace config mocks (get_workspace_url, get_databricks_token) to 3 tests
- Added AmperityAPIClient.fetch_amperity_job_init mocks for stitch setup tests

test_agent_tool_display_routing.py:
- Updated expected command lists for provider-specific routing
- list_schemas now Databricks-only, list_redshift_schemas added for Redshift

test_clients_databricks.py:
- Removed duplicate test_fetch_amperity_job_init (method moved to AmperityAPIClient)

test_databricks.py:
- Fixed workspace config mocking in all compute provider tests

All tests now pass (906 passing, 0 failing).
…ting

Updated execute_tool() to detect the provider from the API client and pass it
to get_command() for proper command routing. This ensures that provider-specific
commands (like list_schemas for Databricks vs list_redshift_schemas for Redshift)
are correctly resolved when the agent calls tools.

Without this change, the agent tool executor would always get the default command
version, which could cause errors when the command expects provider-specific
parameters or behavior.
Changed handle_command() to create the compute provider once and pass it down
to helper functions, implementing a proper dependency injection pattern.

Key changes:
- handle_command() creates DatabricksComputeProvider or EMRComputeProvider
  based on client type
- Passes compute_provider as parameter to _handle_databricks_stitch_setup
  and _handle_redshift_stitch_setup
- Removes compute provider creation from individual helper functions
- Helper functions now receive compute_provider as explicit dependency

This pattern:
- Makes testing easier (can inject mock providers)
- Makes dependencies explicit
- Avoids redundant provider creation
- Follows single responsibility principle

Also updated stitch_tools helper functions to work with the new pattern.
Added configuration getters and setters for Redshift parameters:
- get_redshift_region() / set_redshift_region()
- get_active_database() / set_active_database()
- Support for Redshift cluster_identifier and S3 bucket configuration

Updated RedshiftAPIClient to support S3 operations for init script storage:
- Added upload_to_s3() method for uploading files to S3
- Integrated with existing AWS credentials from configuration

These changes support the Redshift integration path in the stitch setup wizard,
allowing init scripts to be stored in S3 (instead of Databricks Volumes) and
configuration to be managed separately for Redshift vs Databricks.
Service (service.py):
- Added provider detection in execute_command() using get_provider_name_from_client()
- Pass provider parameter to get_command() for correct command resolution
- Updated command listing to show provider-specific commands

UI (tui.py):
- Updated TUI to handle provider-specific command routing
- Display provider-specific command help and autocomplete

Agent Prompts (default_system_prompt.py):
- Updated system prompt to reflect provider-aware command structure
- Added documentation for provider-specific commands (list_schemas vs list_redshift_schemas)
- Updated examples to show correct command usage based on provider

These changes ensure consistent provider-aware command routing across all
entry points (CLI, TUI, Agent, Service).
test_pii_tools.py:
- Changed parameter name from catalog_name_context to catalog_or_database_context
  to reflect provider-agnostic naming
- Updated test_tag_pii_columns_logic_success to use correct parameter

test_list_tables.py:
- No code changes needed - tests already passing with provider-aware updates

These were the final test fixes to achieve 100% test pass rate.
- Update list_schemas.py to display "not selected" instead of None when no active schema
- Update list_redshift_schemas.py with same fix for consistency
- Ensures user-friendly display across both data providers
- Update schema_selection.py to call get_schema() API for detailed schema info
- Show "Not available" instead of "Unknown" when owner cannot be retrieved
- Add proper error handling and debug logging for owner info fetch failures
…anges

- Add data_provider field to ChuckConfig model for tracking current provider type
- Implement set_data_provider() function with automatic cleanup logic
- When switching providers, automatically clear incompatible configuration:
  * Databricks ↔ Redshift: Clear provider-specific config attributes
  * Set active_schema to None to force explicit user selection
- Ensures clean configuration state when switching between data providers
- Replace direct config manager usage with set_data_provider() function
- Ensures wizard uses proper data provider configuration with automatic cleanup
- Maintains consistency with new provider switching behavior
- Make storage_provider parameter required in DatabricksComputeProvider constructor
- Make storage_provider parameter required in EMRComputeProvider constructor
- Remove automatic storage provider instantiation to enforce proper dependency injection
- Add clear error messages directing users to use ProviderFactory
- Ensures proper separation of concerns and prevents circular dependencies
…ection

- Enhanced ProviderFactory.create_compute_provider to automatically create and inject storage providers
- Updated setup_stitch.py to use ProviderFactory instead of direct instantiation
- Added data_provider_type-based storage provider selection in factory
- Ensures consistent provider creation pattern across the codebase
- Update compute provider tests to use mock storage providers as required parameters
- Fix test_workspace_and_init_scripts.py patch paths for proper mocking
- Add proper mock guidance message to prevent URL encoding errors in tests
- Update dependency injection tests to use ProviderFactory pattern
- All 909 tests now passing with proper provider architecture
- Add set_aws_account_id() function for consistency with other config setters
- Follows existing pattern for configuration management
- Update REDSHIFT_CLUSTER_SELECTION validation to require aws_account_id
- Fix wizard step transitions to include AWS_ACCOUNT_ID_INPUT step
- Update AWS region input step to transition to AWS_ACCOUNT_ID_INPUT
- Add environment mocking to AWS Bedrock provider test for clean test isolation

The wizard flow is now:
AWS_PROFILE_INPUT → AWS_REGION_INPUT → AWS_ACCOUNT_ID_INPUT →
REDSHIFT_CLUSTER_SELECTION → S3_BUCKET_INPUT → IAM_ROLE_INPUT
Add AWS_ACCOUNT_ID_INPUT step between AWS_REGION_INPUT and REDSHIFT_CLUSTER_SELECTION:
- New WizardStep enum value
- Add aws_account_id field to WizardState
- Implement AWSAccountIdInputStep with 12-digit validation
- Update state validation to require account_id for cluster selection
- Add step to valid transitions and step ordering
- Update get_next_step logic to include new step

This captures the AWS account ID needed to construct Redshift Serverless
JDBC URLs in the format: workgroup.account-id.region.redshift-serverless.amazonaws.com
Add aws_account_id to context save/load:
- Store account ID in context data for session persistence
- Load account ID when restoring wizard state
- Add account ID to step progression order for forward transition checks

This ensures the AWS account ID is preserved across interactive wizard sessions.
Update manifest generation:
- Import get_aws_account_id from config module
- Add aws_account_id to redshift_config in generated manifests
- Add optional data_provider and compute_provider parameters to generate_manifest_from_scan
- Write provider fields to manifest settings when specified

This ensures manifests contain the AWS account ID needed for Redshift
Serverless JDBC URL construction and explicit provider selection for
self-documenting manifests.
Changes:
- Add compute_provider field to ChuckConfig Pydantic model
- Add get_compute_provider() and set_compute_provider() functions to config API
- Update manifest generation in stitch_tools.py to include data_provider and compute_provider fields from user config
- Change default Databricks job main class from chuck_main to generic_main

This ensures Unity Catalog manifests include explicit provider selection,
making them self-documenting and consistent with Redshift manifests.
Both single-table and multi-table manifest generation now retrieve
provider values from config with databricks as the default fallback.
**Problem**: Tests were modifying the user's real ~/.chuck_config.json file,
adding test values like `last_databricks_run_id: "run-123"` and changing
data_provider settings.

**Root Cause**: The global `_config_manager` singleton in config.py was
initialized at module import time using the default config path (~/.chuck_config.json)
BEFORE pytest fixtures could override it.

**Solution**: Set CHUCK_CONFIG_PATH environment variable at the very top of
conftest.py, BEFORE any imports that use ConfigManager. This ensures all tests
use an isolated temporary config file.

Changes:
- Add test config initialization at top of tests/conftest.py (before imports)
- Create temporary test config directory that persists for test session
- Add reset_config_singleton() fixture to clear singleton between tests
- Prevents test pollution of user's real configuration

Tests now run in complete isolation from user config. Verified by running
287 tests with config file timestamp remaining unchanged.
Two critical fixes:

1. Fix LLM provider selection when using Redshift as data provider
   - When data provider is Redshift and LLM provider is Databricks,
     the wizard was incorrectly passing RedshiftAPIClient to
     DatabricksProvider, causing AttributeError: 'RedshiftAPIClient'
     object has no attribute 'list_models'
   - Added isinstance() check to only use service.client if it's a
     DatabricksAPIClient, otherwise pass None to let DatabricksProvider
     create its own client
   - Applied fix in both LLMProviderSelectionStep and ModelSelectionStep

2. Fix ConfigManager.update() not saving dynamic fields
   - ConfigManager.update() had a hasattr() check that prevented
     dynamic fields from being saved, even though ChuckConfig model
     has extra="allow"
   - This caused aws_account_id (and other non-schema fields) to be
     silently dropped when saving config
   - Removed hasattr() check to allow all fields including dynamic ones
   - This fixes missing aws_account_id in generated Redshift manifests

Issue: Redshift + Databricks setup wizard was failing at LLM selection
Impact: Users can now successfully configure Redshift data provider with
Databricks compute/LLM providers, and all config fields are persisted
@punit-naik-amp punit-naik-amp self-assigned this Dec 18, 2025
@punit-naik-amp
Copy link
Contributor Author

@pragyan-amp The new setup flow is working:

Some configuration settings are missing. Starting setup wizard...
Starting Chuck setup wizard...

Step 1: Amperity Authentication
==================================================
Starting Amperity authentication...
Amperity Nonce: unbuttoned-uncle-itunes
Press any key to open the login page in your browser...
Waiting for authentication to complete...
Press Ctrl+C to cancel
[6s] Waiting for authentication...

Step 2: Data Provider Selection
==================================================
Please select your data provider:
  1. Databricks (Unity Catalog)
  2. AWS Redshift
Enter the number or name of the provider:
chuck (interactive) > 1

Step 1: Compute Provider Selection
==================================================
Please select your compute provider:
  1. Databricks (default)
Enter the number or name of the provider:
chuck (interactive) > 1

Step 3: Databricks Workspace
==================================================
Please enter your Databricks workspace URL (e.g., https://my-workspace.cloud.databricks.com)
chuck (interactive) > https://dbc-6e75f43b-0f28.cloud.databricks.com

Step 4: Databricks Token
==================================================
Please enter your Databricks API token:
chuck (interactive) > ************************************

Step 5: LLM Provider Selection
==================================================
Please select your LLM provider:
  1. Databricks (default)
  2. AWS Bedrock
Enter the number or name of the provider:
chuck (interactive) > 1

Step 6: LLM Model Selection
==================================================

Available models:
1. databricks-claude-sonnet-4-5 (default)
2. databricks-gpt-5-2
3. databricks-gpt-5-1
4. databricks-gpt-5
5. databricks-gemini-2-5-flash
6. databricks-gpt-oss-120b
7. databricks-gpt-5-mini
8. databricks-gpt-5-nano
9. databricks-gemini-2-5-pro
10. databricks-gpt-oss-20b
11. databricks-qwen3-next-80b-a3b-instruct
12. databricks-llama-4-maverick
13. databricks-gemma-3-12b
14. databricks-meta-llama-3-1-8b-instruct
15. databricks-meta-llama-3-3-70b-instruct
16. databricks-claude-opus-4-5
17. databricks-claude-opus-4-1
18. databricks-claude-sonnet-4
19. databricks-claude-3-7-sonnet
20. databricks-gte-large-en
21. databricks-bge-large-en
22. databricks-meta-llama-3-1-405b-instruct
Please enter the number or name of the model you want to use:
chuck (interactive) > 1

Step 7: Usage Tracking Consent
==================================================

Chuck is a research preview application meant to showcase a new wave of data engineering tooling powered by AI.

Our goal is to learn as much about what is working and not working as possible, and your usage is key to that!

Chuck can log usage to Amperity so that we can see how users are using the application. This is a key piece of information that we 
will use to inform our roadmap, prioritize bug fixes, and refine existing features.

Chuck runs locally and Amperity will never have access to your data.

                                                                                              
  Chuck shares                    Chuck NEVER shares                                          
 ──────────────────────────────────────────────────────────────────────────────────────────── 
  1. Prompts you type             1. Your data or the values in the tables you interact with  
  2. Tools/context the LLM uses   2. Credentials of any form                                  
  3. Errors you encounter         3. Security details about your Databricks account           
                                                                                              

Chuck is an Open Source CLI and you can always review the code for security at https://github.com/amperity/chuck-data

Do you consent to sharing your usage information with Amperity (yes/no)?
chuck (interactive) > yes

Setup wizard completed successfully!
You are now ready to use Chuck with all features enabled.
Type /help to see available commands.
Thank you for helping us make Chuck better! Setup wizard completed successfully!
chuck > /list-warehouses
Found 1 SQL warehouse(s).
                    Available SQL Warehouses                     
╭───────────────────┬──────────────────┬───────┬──────┬─────────╮
│ Name              │ ID               │ Size  │ Type │ State   │
├───────────────────┼──────────────────┼───────┼──────┼─────────┤
│ Starter Warehouse │ 6b8e5222fc3b90cf │ small │ pro  │ running │
╰───────────────────┴──────────────────┴───────┴──────┴─────────╯

Current SQL warehouse ID: 6b8e5222fc3b90cf
chuck > /select-warehouse --warehouse 6b8e5222fc3b90cf
Active SQL warehouse is now set to 'Starter Warehouse' (ID: 6b8e5222fc3b90cf, State: RUNNING).
chuck > /list-catalogs
Found 69 catalog(s).
                                                         Available Catalogs                                                          
╭────────────────────────────────┬──────────────────────┬─────────────────────────────────────┬─────────────────────────────────────╮
│ Name                           │ Type                 │ Comment                             │ Owner                               │
├────────────────────────────────┼──────────────────────┼─────────────────────────────────────┼─────────────────────────────────────┤
│ acme2-bridge                   │ deltasharing_catalog │                                     │ caleb@amperity.com                  │
│ acme3_source_data              │ deltasharing_catalog │                                     │ joyce.greenbaum@amperity.com        │
│ amperity                       │ managed_catalog      │                                     │ cary@amperity.com                   │
│ amperity_data_assets           │ managed_catalog      │                                     │ Org.Product                         │
│ amperity_marketplace           │ managed_catalog      │ Amperity assets for Databricks      │ caleb@amperity.com                  │
│                                │                      │ Marketplace                         │                                     │
│ caleb_chuck_data               │ managed_catalog      │                                     │ caleb@amperity.com                  │
│ chuck_demo                     │ managed_catalog      │                                     │ caleb@amperity.com                  │
│ chuck_sample_data              │ deltasharing_catalog │                                     │ v-punit.naik@amperity.com           │
│ chuck_usage                    │ managed_catalog      │                                     │ caleb@amperity.com                  │
│ customer_data_diagnostic       │ managed_catalog      │                                     │ caleb@amperity.com                  │
│ honda_sb_refkey                │ deltasharing_catalog │                                     │ stephen.wilcoxon@amperity.com       │
│ hondaprod                      │ deltasharing_catalog │                                     │ robert.holiday@amperity.com         │
│ ira_pk_testing                 │ managed_catalog      │                                     │ ira.rickman@amperity.com            │
│ main                           │ managed_catalog      │ Main catalog (auto-created)         │ cary+databricks@amperity.com        │
│ punit                          │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ punit_01                       │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ punit_02                       │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ punit_local                    │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ samples                        │ system_catalog       │ These sample datasets are made      │ System user                         │
│                                │                      │ available by third party data       │                                     │
│                                │                      │ providers as well as open data      │                                     │
│                                │                      │ sources. You can learn more about   │                                     │
│                                │                      │ each data set by clicking on each   │                                     │
│                                │                      │ one.                                │                                     │
│                                │                      │                                     │                                     │
│                                │                      │ To discover more instantly          │                                     │
│                                │                      │ available, free data sets across a  │                                     │
│                                │                      │ wide range of industry use cases,   │                                     │
│                                │                      │ visit [Databricks                   │                                     │
│                                │                      │ Marketplace](/marketplace).         │                                     │
│                                │                      │                                     │                                     │
│                                │                      │ Please note that the third party    │                                     │
│                                │                      │ data sets represent a reduced       │                                     │
│                                │                      │ portion of the available data       │                                     │
│                                │                      │ attributes, volume, and data types  │                                     │
│                                │                      │ available from providers, and are   │                                     │
│                                │                      │ intended for educational rather     │                                     │
│                                │                      │ than production purposes.           │                                     │
│ shopify                        │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_full_sync              │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_full_sync_final        │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_incremental_sync       │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_incremental_sync_final │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test                   │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_0                 │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_00                │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_1                 │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_2                 │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_3                 │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_i                 │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_ii                │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new               │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_10            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_11            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_12            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_13            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_14            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_15            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_16            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_17            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_18            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_19            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_2             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_20            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_21            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_22            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_23            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_24            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_25            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_26            │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_3             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_4             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_5             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_6             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_7             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_8             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ shopify_test_new_9             │ managed_catalog      │                                     │ v-punit.naik@amperity.com           │
│ source_system_data             │ managed_catalog      │                                     │ Org.Amperity                        │
│ system                         │ system_catalog       │ System catalog (auto-created)       │ System user                         │
│ tenant_acme_2                  │ managed_catalog      │                                     │ 7f4a1169-98a8-4f22-aedd-66198d3162… │
│ tenant_acme_2_deloitte_011924  │ managed_catalog      │                                     │ 7f4a1169-98a8-4f22-aedd-66198d3162… │
│ tenant_acme_2_mhl_20230924     │ managed_catalog      │                                     │ 7f4a1169-98a8-4f22-aedd-66198d3162… │
│ tenant_acme_2_mhl_20240510     │ managed_catalog      │ Automatically created by the        │ 7f4a1169-98a8-4f22-aedd-66198d3162… │
│                                │                      │ predictive analyst workflow.        │                                     │
│ tenant_ampedup_profiles_demo   │ managed_catalog      │                                     │ c10a56c7-7b94-4ed0-b038-5624cfbe2f… │
│ tenant_hello_streams_kurt      │ managed_catalog      │                                     │ c10a56c7-7b94-4ed0-b038-5624cfbe2f… │
│ tenant_shopify_security_check  │ managed_catalog      │                                     │ c10a56c7-7b94-4ed0-b038-5624cfbe2f… │
│ tenant_sravani                 │ managed_catalog      │                                     │ 7f4a1169-98a8-4f22-aedd-66198d3162… │
│ tenant_yong_test               │ managed_catalog      │                                     │ c10a56c7-7b94-4ed0-b038-5624cfbe2f… │
╰────────────────────────────────┴──────────────────────┴─────────────────────────────────────┴─────────────────────────────────────╯

Current catalog: punit_local
chuck > /select-catalog punit_local
Active catalog is now set to 'punit_local' (Type: MANAGED_CATALOG, Owner: v-punit.naik@amperity.com).
chuck > /list-schemas
Found 4 schema(s) in catalog 'punit_local'.
             Schemas in catalog 'punit_local'             
╭────────────────────┬───────────────────────────────────╮
│ Name               │ Comment                           │
├────────────────────┼───────────────────────────────────┤
│ default            │ Default schema (auto-created)     │
│ information_schema │ Information schema (auto-created) │
│ punit              │                                   │
│ stitch_outputs     │                                   │
╰────────────────────┴───────────────────────────────────╯

Current schema: punit
chuck > /select-schema punit
Active schema is now set to 'punit' in catalog 'punit_local' (Owner: v-punit.naik@amperity.com).
chuck > can we scan for pii info in currently selected catalog and schema?
Thinking...
Scanning punit_local.punit.ecommerce_customers...

PII Scan Results: punit_local.punit
Found 1 tables with a total of 12 PII columns.

Tables with PII:
                                       Tables with PII                                       
╭─────────────────────┬───────────────────────────────────────┬─────────────┬───────────────╮
│ Table Name          │ Full Name                             │ PII Columns │ Total Columns │
├─────────────────────┼───────────────────────────────────────┼─────────────┼───────────────┤
│ ecommerce_customers │ punit_local.punit.ecommerce_customers │ 12          │ 17            │
╰─────────────────────┴───────────────────────────────────────┴─────────────┴───────────────╯

Columns in ecommerce_customers:
╭────────────────┬───────────┬────────────╮
│ Column Name    │ Data Type │ PII Type   │
├────────────────┼───────────┼────────────┤
│ master_id      │ LONG      │            │
│ customer_id    │ STRING    │            │
│ name_prefix    │ STRING    │ title      │
│ name_first     │ STRING    │ given-name │
│ name_last      │ STRING    │ surname    │
│ gender         │ STRING    │ gender     │
│ email          │ STRING    │ email      │
│ account_status │ STRING    │            │
│ addr_ln_1_txt  │ STRING    │ address    │
│ city           │ STRING    │ city       │
│ state          │ STRING    │ state      │
│ postal_code    │ STRING    │ postal     │
│ birth_dt       │ DATE      │ birthdate  │
│ employment     │ STRING    │            │
│ job_title      │ STRING    │            │
│ phone          │ STRING    │ phone      │
│ dtUpdateDate   │ STRING    │ update-dt  │
╰────────────────┴───────────┴────────────╯
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Awesome! 🌟 I just scanned the **punit_local.punit** schema for PII and here's what we found:                                     │
│                                                                                                                                   │
│ **Scan Summary:**                                                                                                                 │
│ - **Tables scanned:** 1                                                                                                           │
│ - **Tables with PII:** 1                                                                                                          │
│ - **Total PII columns found:** 12                                                                                                 │
│                                                                                                                                   │
│ **Table: ecommerce_customers**                                                                                                    │
│ Found 12 PII columns out of 17 total columns:                                                                                     │
│                                                                                                                                   │
│ 1. **name_prefix** (STRING) - title                                                                                               │
│ 2. **name_first** (STRING) - given-name                                                                                           │
│ 3. **name_last** (STRING) - surname                                                                                               │
│ 4. **gender** (STRING) - gender                                                                                                   │
│ 5. **email** (STRING) - email                                                                                                     │
│ 6. **addr_ln_1_txt** (STRING) - address                                                                                           │
│ 7. **city** (STRING) - city                                                                                                       │
│ 8. **state** (STRING) - state                                                                                                     │
│ 9. **postal_code** (STRING) - postal                                                                                              │
│ 10. **birth_dt** (DATE) - birthdate                                                                                               │
│ 11. **phone** (STRING) - phone                                                                                                    │
│ 12. **dtUpdateDate** (STRING) - update-dt                                                                                         │
│                                                                                                                                   │
│ Pretty comprehensive customer data in there! 📊                                                                                   │
│                                                                                                                                   │
│ Would you like me to help you **tag these PII columns** with their semantic types? This would make it easier to track and manage  │
│ sensitive data across your catalog. Just let me know! ✌️                                                                           │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > please tag pii columns.
Thinking...
→ tag_pii_columns
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Perfect! ✨ All PII columns have been successfully tagged in Unity Catalog!                                                       │
│                                                                                                                                   │
│ **Tagging Results for `ecommerce_customers`:**                                                                                    │
│                                                                                                                                   │
│ All **12 PII columns** were tagged successfully:                                                                                  │
│ - ✅ name_prefix → title                                                                                                          │
│ - ✅ name_first → given-name                                                                                                      │
│ - ✅ name_last → surname                                                                                                          │
│ - ✅ gender → gender                                                                                                              │
│ - ✅ email → email                                                                                                                │
│ - ✅ addr_ln_1_txt → address                                                                                                      │
│ - ✅ city → city                                                                                                                  │
│ - ✅ state → state                                                                                                                │
│ - ✅ postal_code → postal                                                                                                         │
│ - ✅ birth_dt → birthdate                                                                                                         │
│ - ✅ phone → phone                                                                                                                │
│ - ✅ dtUpdateDate → update-dt                                                                                                     │
│                                                                                                                                   │
│ These semantic tags are now applied in Unity Catalog, which means:                                                                │
│ - Better data governance and compliance tracking                                                                                  │
│ - Easier to identify sensitive data across your lakehouse                                                                         │
│ - Ready for identity resolution if you want to set up Stitch                                                                      │
│                                                                                                                                   │
│ Anything else you'd like to do with this data? 🌊                                                                                 │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > can we scan for pii info in punit.punit?
Thinking...
Scanning punit.punit.pos_customers...

PII Scan Results: punit.punit
Found 1 tables with a total of 12 PII columns.

Tables with PII:
                              Tables with PII                              
╭───────────────┬───────────────────────────┬─────────────┬───────────────╮
│ Table Name    │ Full Name                 │ PII Columns │ Total Columns │
├───────────────┼───────────────────────────┼─────────────┼───────────────┤
│ pos_customers │ punit.punit.pos_customers │ 12          │ 17            │
╰───────────────┴───────────────────────────┴─────────────┴───────────────╯

Columns in pos_customers:
╭────────────────┬───────────┬────────────╮
│ Column Name    │ Data Type │ PII Type   │
├────────────────┼───────────┼────────────┤
│ master_id      │ LONG      │            │
│ cid            │ STRING    │            │
│ name_prefix    │ STRING    │ title      │
│ firstName      │ STRING    │ given-name │
│ lastName       │ STRING    │ surname    │
│ gender         │ STRING    │ gender     │
│ emailAddress   │ STRING    │ email      │
│ account_status │ STRING    │            │
│ address        │ STRING    │ address    │
│ city           │ STRING    │ city       │
│ state          │ STRING    │ state      │
│ postal_code    │ STRING    │ postal     │
│ dateofbirth    │ DATE      │ birthdate  │
│ employment     │ STRING    │            │
│ occupation     │ STRING    │            │
│ phone          │ STRING    │ phone      │
│ dtUpdateDate   │ STRING    │ update-dt  │
╰────────────────┴───────────┴────────────╯
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Nice! 🌟 Just scanned the **punit.punit** schema and found some customer data:                                                    │
│                                                                                                                                   │
│ **Scan Summary:**                                                                                                                 │
│ - **Tables scanned:** 1 table                                                                                                     │
│ - **Tables with PII:** 1 table                                                                                                    │
│ - **Total PII columns found:** 12 columns                                                                                         │
│                                                                                                                                   │
│ **Table: pos_customers**                                                                                                          │
│ Found 12 PII columns out of 17 total columns:                                                                                     │
│                                                                                                                                   │
│ 1. **name_prefix** → title                                                                                                        │
│ 2. **firstName** → given-name                                                                                                     │
│ 3. **lastName** → surname                                                                                                         │
│ 4. **gender** → gender                                                                                                            │
│ 5. **emailAddress** → email                                                                                                       │
│ 6. **address** → address                                                                                                          │
│ 7. **city** → city                                                                                                                │
│ 8. **state** → state                                                                                                              │
│ 9. **postal_code** → postal                                                                                                       │
│ 10. **dateofbirth** → birthdate                                                                                                   │
│ 11. **phone** → phone                                                                                                             │
│ 12. **dtUpdateDate** → update-dt                                                                                                  │
│                                                                                                                                   │
│ Looks like point-of-sale customer data with similar PII fields to the ecommerce table we just tagged!                             │
│                                                                                                                                   │
│ Would you like me to:                                                                                                             │
│ - **Tag these PII columns** in Unity Catalog?                                                                                     │
│ - **Set up Stitch** to unify this with your ecommerce_customers table for a complete customer view?                               │
│ - Something else?                                                                                                                 │
│                                                                                                                                   │
│ Let me know what vibes with you! ✌️                                                                                                │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > please tag pii columns.
Thinking...
→ tag_pii_columns
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Excellent! ✨ All PII columns in the `pos_customers` table have been successfully tagged!                                         │
│                                                                                                                                   │
│ **Tagging Results for `pos_customers`:**                                                                                          │
│                                                                                                                                   │
│ All **12 PII columns** were tagged successfully:                                                                                  │
│ - ✅ name_prefix → title                                                                                                          │
│ - ✅ firstName → given-name                                                                                                       │
│ - ✅ lastName → surname                                                                                                           │
│ - ✅ gender → gender                                                                                                              │
│ - ✅ emailAddress → email                                                                                                         │
│ - ✅ address → address                                                                                                            │
│ - ✅ city → city                                                                                                                  │
│ - ✅ state → state                                                                                                                │
│ - ✅ postal_code → postal                                                                                                         │
│ - ✅ dateofbirth → birthdate                                                                                                      │
│ - ✅ phone → phone                                                                                                                │
│ - ✅ dtUpdateDate → update-dt                                                                                                     │
│                                                                                                                                   │
│ So now you've got PII tagged in both:                                                                                             │
│ - **punit_local.punit.ecommerce_customers**                                                                                       │
│ - **punit.punit.pos_customers**                                                                                                   │
│                                                                                                                                   │
│ This is perfect setup if you want to create a unified customer view across both data sources! The semantic tags will help Stitch  │
│ understand how to match and merge these customer records.                                                                         │
│                                                                                                                                   │
│ Want to set up Stitch to create that unified identity graph? Or anything else I can help with? 🌊                                 │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > can we scan for pii info in punit_02.punit?
Thinking...
Scanning punit_02.punit.loyalty_customers...

PII Scan Results: punit_02.punit
Found 1 tables with a total of 11 PII columns.

Tables with PII:
                                   Tables with PII                                    
╭───────────────────┬──────────────────────────────────┬─────────────┬───────────────╮
│ Table Name        │ Full Name                        │ PII Columns │ Total Columns │
├───────────────────┼──────────────────────────────────┼─────────────┼───────────────┤
│ loyalty_customers │ punit_02.punit.loyalty_customers │ 11          │ 17            │
╰───────────────────┴──────────────────────────────────┴─────────────┴───────────────╯

Columns in loyalty_customers:
╭───────────────┬───────────┬────────────╮
│ Column Name   │ Data Type │ PII Type   │
├───────────────┼───────────┼────────────┤
│ lm_id_uuid    │ STRING    │            │
│ master_id     │ LONG      │            │
│ lm_id         │ STRING    │            │
│ fname         │ STRING    │ given-name │
│ lname         │ STRING    │ surname    │
│ emailaddress  │ STRING    │ email      │
│ gender        │ STRING    │ gender     │
│ addr1         │ STRING    │ address    │
│ city          │ STRING    │ city       │
│ state         │ STRING    │ state      │
│ zipcode       │ STRING    │ postal     │
│ birthdate     │ DATE      │ birthdate  │
│ created       │ DATE      │ create-dt  │
│ points        │ STRING    │            │
│ current_tier  │ STRING    │            │
│ lmProgramName │ STRING    │            │
│ dtUpdateDate  │ STRING    │ update-dt  │
╰───────────────┴───────────┴────────────╯
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Sweet! 🌟 Just scanned **punit_02.punit** and found loyalty program customer data:                                                │
│                                                                                                                                   │
│ **Scan Summary:**                                                                                                                 │
│ - **Tables scanned:** 1 table                                                                                                     │
│ - **Tables with PII:** 1 table                                                                                                    │
│ - **Total PII columns found:** 11 columns                                                                                         │
│                                                                                                                                   │
│ **Table: loyalty_customers**                                                                                                      │
│ Found 11 PII columns out of 17 total columns:                                                                                     │
│                                                                                                                                   │
│ 1. **fname** → given-name                                                                                                         │
│ 2. **lname** → surname                                                                                                            │
│ 3. **emailaddress** → email                                                                                                       │
│ 4. **gender** → gender                                                                                                            │
│ 5. **addr1** → address                                                                                                            │
│ 6. **city** → city                                                                                                                │
│ 7. **state** → state                                                                                                              │
│ 8. **zipcode** → postal                                                                                                           │
│ 9. **birthdate** → birthdate                                                                                                      │
│ 10. **created** → create-dt                                                                                                       │
│ 11. **dtUpdateDate** → update-dt                                                                                                  │
│                                                                                                                                   │
│ This is loyalty program data with similar customer PII! Now you've got customer data across three different sources:              │
│ - **punit_local.punit.ecommerce_customers** (tagged ✅)                                                                           │
│ - **punit.punit.pos_customers** (tagged ✅)                                                                                       │
│ - **punit_02.punit.loyalty_customers** (not yet tagged)                                                                           │
│                                                                                                                                   │
│ Would you like me to tag these PII columns too? This would be perfect for creating a unified customer 360 view across all three   │
│ data sources! 🌊                                                                                                                  │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > please tag pii columns.
Thinking...
→ tag_pii_columns
╭───────────────────────────────────────────────────────── Agent Response ──────────────────────────────────────────────────────────╮
│ Perfect! ✨ All PII columns in the `loyalty_customers` table have been successfully tagged!                                       │
│                                                                                                                                   │
│ **Tagging Results for `loyalty_customers`:**                                                                                      │
│                                                                                                                                   │
│ All **11 PII columns** were tagged successfully:                                                                                  │
│ - ✅ fname → given-name                                                                                                           │
│ - ✅ lname → surname                                                                                                              │
│ - ✅ emailaddress → email                                                                                                         │
│ - ✅ gender → gender                                                                                                              │
│ - ✅ addr1 → address                                                                                                              │
│ - ✅ city → city                                                                                                                  │
│ - ✅ state → state                                                                                                                │
│ - ✅ zipcode → postal                                                                                                             │
│ - ✅ birthdate → birthdate                                                                                                        │
│ - ✅ created → create-dt                                                                                                          │
│ - ✅ dtUpdateDate → update-dt                                                                                                     │
│                                                                                                                                   │
│ Awesome! Now you've got all three customer data sources fully tagged with semantic PII labels:                                    │
│ - ✅ **punit_local.punit.ecommerce_customers** (12 PII columns)                                                                   │
│ - ✅ **punit.punit.pos_customers** (12 PII columns)                                                                               │
│ - ✅ **punit_02.punit.loyalty_customers** (11 PII columns)                                                                        │
│                                                                                                                                   │
│ This is a perfect setup for creating a unified customer identity graph! With Stitch, you could merge these three sources to get a │
│ complete 360-degree view of your customers across ecommerce, point-of-sale, and loyalty programs.                                 │
│                                                                                                                                   │
│ Want me to help you set up Stitch to unify all this customer data? 🌊✌️                                                            │
╰───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
chuck > can we run stitch on tables in punit.punit, punit_02.punit and punit_local.punit?
Thinking...

Preparing Stitch configuration for 3 locations...
  • punit.punit
  • punit_02.punit
  • punit_local.punit
Scanning punit.punit.pos_customers...
Scanning punit_02.punit.loyalty_customers...
Scanning punit_local.punit.ecommerce_customers...

Stitch Configuration Preview:
• Scanned locations: 3
  - punit.punit
  - punit_02.punit
  - punit_local.punit
• Output: punit.stitch_outputs
• Job Name: stitch-multi-2025-12-18_14-39
• Config Path: /Volumes/punit/punit/chuck/stitch-multi-2025-12-18_14-39.json

Scan Results:
  ✓ punit.punit (1 tables, 17 PII columns)
  ✓ punit_02.punit (1 tables, 17 PII columns)
  ✓ punit_local.punit (1 tables, 17 PII columns)

• Tables to process: 3
• Total PII fields: 51

Tables:
  - punit.punit.pos_customers (17 fields)
    • master_id
    • cid
    • name_prefix (title)
    • firstName (given-name)
    • lastName (surname)
    • gender (gender)
    • emailAddress (email)
    • account_status
    • address (address)
    • city (city)
    • state (state)
    • postal_code (postal)
    • dateofbirth (birthdate)
    • employment
    • occupation
    • phone (phone)
    • dtUpdateDate (update-dt)
  - punit_02.punit.loyalty_customers (17 fields)
    • lm_id_uuid
    • master_id
    • lm_id
    • fname (given-name)
    • lname (surname)
    • emailaddress (email)
    • gender (gender)
    • addr1 (address)
    • city (city)
    • state (state)
    • zipcode (postal)
    • birthdate (birthdate)
    • created (create-dt)
    • points
    • current_tier
    • lmProgramName
    • dtUpdateDate (update-dt)
  - punit_local.punit.ecommerce_customers (17 fields)
    • master_id
    • customer_id
    • name_prefix (title)
    • name_first (given-name)
    • name_last (surname)
    • gender (gender)
    • email (email)
    • account_status
    • addr_ln_1_txt (address)
    • city (city)
    • state (state)
    • postal_code (postal)
    • birth_dt (birthdate)
    • employment
    • job_title
    • phone (phone)
    • dtUpdateDate (update-dt)

What would you like to do?
• Type 'launch' or 'yes' to launch the job
• Describe changes (e.g., 'remove table X', 'add email semantic to field Y')
• Type 'cancel' to abort the setup
chuck (interactive) > yes
When you launch Stitch it will create a job in Databricks and a notebook that will show you Stitch results when the job completes.
Stitch will create a schema called stitch_outputs with two new tables called unified_coalesced and unified_scores.
The unified_coalesced table will contain the standardized PII and amperity_ids.
The unified_scores table will contain the links and confidence scores.
Be sure to check out the results in the Stitch Report notebook!

Ready to launch Stitch job. Type 'confirm' to proceed or 'cancel' to abort.
chuck (interactive) > confirm

Launching Stitch job...

Stitch job launched successfully!

Technical Summary:
Stitch setup for punit.punit initiated.
Config: /Volumes/punit/punit/chuck/stitch-multi-2025-12-18_14-39.json
Chuck Job ID: chk-20251218-32995-Gmgo7taaCXw
Databricks Job Run ID: 386826340812872

Created Stitch Report notebook:
Notebook Path: /Workspace/Users/v-punit.naik@amperity.com/Stitch Report: punit.punit
Stitch is now running in your Databricks workspace!

Running Stitch creates a job that will take at least a few minutes to complete.

What Stitch will create:
• Schema: punit.stitch_outputs
• Table: punit.stitch_outputs.unified_coalesced (standardized PII and amperity_ids)
• Table: punit.stitch_outputs.unified_scores (links and confidence scores)

A Stitch report showing the results has been created to help you see the results.
The report will not work until Stitch is complete.


What you can do now:
• you can ask me about the status of the Chuck job (job-id: chk-20251218-32995-Gmgo7taaCXw)
• you can ask me about the status of the Databricks job run (run-id: 386826340812872)
• Open Databricks job in browser: 
https://dbc-6e75f43b-0f28.cloud.databricks.com/jobs/209873437403054/runs/386826340812872?o=dbc-6e75f43b-0f28
• Open Stitch Report notebook in browser: 
https://dbc-6e75f43b-0f28.cloud.databricks.com/?o=dbc-6e75f43b-0f28#workspace/Users/v-punit.naik%40amperity.com/Stitch%20Report%3A%20
punit.punit
• Open Databricks workspace: https://dbc-6e75f43b-0f28.cloud.databricks.com

@punit-naik-amp punit-naik-amp merged commit 96715d2 into CHUCK-10-redshift Dec 19, 2025
@punit-naik-amp punit-naik-amp deleted the CHUCK-10-pr7-setup-wizard-provider-selection branch December 19, 2025 05:44
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants