Skip to content

anthony-maio/slipcore

Repository files navigation

Slipstream

Semantic Quantization for Multi-Agent AI Communication

PyPI License HuggingFace Model HuggingFace Dataset Paper


82% fewer tokens. Semantic meaning preserved. Built for the AAIF ecosystem.

Before (45 tokens):
{"from": "alice", "to": "bob", "type": "request", "action": "review", "target": "auth_module"}

After (5 tokens):
SLIP v1 alice bob RequestReview auth_module

Multi-agent AI systems waste 40-60% of compute on coordination overhead. At scale, that's $180K-$2.5M/year just for agents talking to each other.

Slipstream fixes this through semantic quantization - transmitting pointers to concepts rather than the concepts themselves.


Quick Start

pip install slipcore
from slipcore import slip, decode, think_quantize_transmit

# Create a message (5 tokens instead of 45)
wire = slip("alice", "bob", "RequestReview", ["auth_module"])
# -> "SLIP v1 alice bob RequestReview auth_module"

# Or let the quantizer map natural language
wire = think_quantize_transmit(
    "Please check the authentication code for security issues",
    src="dev", dst="reviewer"
)
# -> "SLIP v1 dev reviewer RequestReview"

# Decode
msg = decode(wire)
print(msg.anchor.canonical)  # "Request review of work"

Why Slipstream?

The Problem

BPE tokenizers fragment compressed formats, negating syntactic optimization:

Compressed: REQ/TSK|s=7|d=3|act=review
Expected:   8 tokens
Actual:     22 tokens (every | and = is a token!)

The Solution

Slipstream uses a Universal Concept Reference (UCR) - a shared semantic manifold where common agent intents have single-token names that work across all LLM architectures.

Format Tokens Annual Cost (50 agents)
JSON verbose ~45 $180,000
JSON minimal ~30 $120,000
Slipstream ~5-8 $32,000

Wire Format

SLIP v1 <src> <dst> <anchor> [payload...]
  • No special characters - avoids BPE fragmentation
  • Space-separated - clean tokenization
  • CamelCase anchors - single tokens in most tokenizers

Core Anchors

Category Anchors
Requests RequestTask, RequestReview, RequestHelp, RequestPlan
Inform InformComplete, InformProgress, InformBlocked, InformStatus
Propose ProposePlan, ProposeChange, ProposeAlternative
Evaluate EvalApprove, EvalReject, EvalNeedsWork
Meta Accept, Reject, MetaAck, MetaHandoff, Fallback

Finetuned Model

We provide a ready-to-use model trained on the Slipstream protocol:

Format Link Use Case
LoRA Adapter slipstream-glm-z1-9b Merge with base
GGUF Q4 slipstream-glm-z1-9b-gguf Ollama / llama.cpp
Dataset slipstream-tqt Train your own

Run with Ollama

ollama run anthony-maio/slipstream

Train Your Own

# Generate training dataset
python -m slipcore.finetune_llm -n 1000 --provider gemini -o train.jsonl

# See notebooks/slipstream_finetune_colab.ipynb for full guide

AAIF Integration

Slipstream is designed as the transport layer for the Linux Foundation Agentic AI ecosystem:

┌─────────────────────────────────────┐
│   Application (Agent Logic)        │
└────────────────┬────────────────────┘
                 │
┌────────────────▼────────────────────┐
│   MCP / A2A (Semantic Layer)        │
└────────────────┬────────────────────┘
                 │
┌────────────────▼────────────────────┐
│   Slipstream (Transport Layer)      │  ← 82% token reduction
└────────────────┬────────────────────┘
                 │
┌────────────────▼────────────────────┐
│   Network                           │
└─────────────────────────────────────┘

Resources


Citation

@misc{maio2025slipstream,
  title={Slipstream: Semantic Quantization for Efficient Multi-Agent Coordination},
  author={Maio, Anthony},
  year={2025},
  url={https://github.com/anthony-maio/slipcore}
}

License

Apache 2.0


Stop paying the token tax.

pip install slipcore

About

SLIPCore - Streamlined Interagent Protocol for LLM agent communication

Resources

License

Stars

Watchers

Forks

Packages

No packages published