82% fewer tokens. Semantic meaning preserved. Built for the AAIF ecosystem.
Before (45 tokens):
{"from": "alice", "to": "bob", "type": "request", "action": "review", "target": "auth_module"}
After (5 tokens):
SLIP v1 alice bob RequestReview auth_module
Multi-agent AI systems waste 40-60% of compute on coordination overhead. At scale, that's $180K-$2.5M/year just for agents talking to each other.
Slipstream fixes this through semantic quantization - transmitting pointers to concepts rather than the concepts themselves.
pip install slipcorefrom slipcore import slip, decode, think_quantize_transmit
# Create a message (5 tokens instead of 45)
wire = slip("alice", "bob", "RequestReview", ["auth_module"])
# -> "SLIP v1 alice bob RequestReview auth_module"
# Or let the quantizer map natural language
wire = think_quantize_transmit(
"Please check the authentication code for security issues",
src="dev", dst="reviewer"
)
# -> "SLIP v1 dev reviewer RequestReview"
# Decode
msg = decode(wire)
print(msg.anchor.canonical) # "Request review of work"BPE tokenizers fragment compressed formats, negating syntactic optimization:
Compressed: REQ/TSK|s=7|d=3|act=review
Expected: 8 tokens
Actual: 22 tokens (every | and = is a token!)
Slipstream uses a Universal Concept Reference (UCR) - a shared semantic manifold where common agent intents have single-token names that work across all LLM architectures.
| Format | Tokens | Annual Cost (50 agents) |
|---|---|---|
| JSON verbose | ~45 | $180,000 |
| JSON minimal | ~30 | $120,000 |
| Slipstream | ~5-8 | $32,000 |
SLIP v1 <src> <dst> <anchor> [payload...]
- No special characters - avoids BPE fragmentation
- Space-separated - clean tokenization
- CamelCase anchors - single tokens in most tokenizers
| Category | Anchors |
|---|---|
| Requests | RequestTask, RequestReview, RequestHelp, RequestPlan |
| Inform | InformComplete, InformProgress, InformBlocked, InformStatus |
| Propose | ProposePlan, ProposeChange, ProposeAlternative |
| Evaluate | EvalApprove, EvalReject, EvalNeedsWork |
| Meta | Accept, Reject, MetaAck, MetaHandoff, Fallback |
We provide a ready-to-use model trained on the Slipstream protocol:
| Format | Link | Use Case |
|---|---|---|
| LoRA Adapter | slipstream-glm-z1-9b | Merge with base |
| GGUF Q4 | slipstream-glm-z1-9b-gguf | Ollama / llama.cpp |
| Dataset | slipstream-tqt | Train your own |
ollama run anthony-maio/slipstream# Generate training dataset
python -m slipcore.finetune_llm -n 1000 --provider gemini -o train.jsonl
# See notebooks/slipstream_finetune_colab.ipynb for full guideSlipstream is designed as the transport layer for the Linux Foundation Agentic AI ecosystem:
┌─────────────────────────────────────┐
│ Application (Agent Logic) │
└────────────────┬────────────────────┘
│
┌────────────────▼────────────────────┐
│ MCP / A2A (Semantic Layer) │
└────────────────┬────────────────────┘
│
┌────────────────▼────────────────────┐
│ Slipstream (Transport Layer) │ ← 82% token reduction
└────────────────┬────────────────────┘
│
┌────────────────▼────────────────────┐
│ Network │
└─────────────────────────────────────┘
- Paper: Slipstream: Semantic Quantization for Efficient Multi-Agent Coordination
- Model: HuggingFace
- Dataset: HuggingFace
- Spec: spec/slip-spec.md
@misc{maio2025slipstream,
title={Slipstream: Semantic Quantization for Efficient Multi-Agent Coordination},
author={Maio, Anthony},
year={2025},
url={https://github.com/anthony-maio/slipcore}
}Apache 2.0
Stop paying the token tax.
pip install slipcore