-
Notifications
You must be signed in to change notification settings - Fork 29k
[SPARK-24740][PYTHON][ML] Make PySpark's tests compatible with NumPy 1.14+ #21715
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
|
Test build #92618 has finished for PR 21715 at commit
|
Member
Author
|
retest this please |
|
Test build #92691 has finished for PR 21715 at commit
|
Member
Author
|
Merged to master. |
maropu
pushed a commit
to maropu/spark
that referenced
this pull request
Jan 19, 2019
…1.14+
## What changes were proposed in this pull request?
This PR proposes to make PySpark's tests compatible with NumPy 0.14+
NumPy 0.14.x introduced rather radical changes about its string representation.
For example, the tests below are failed:
```
**********************************************************************
File "/.../spark/python/pyspark/ml/linalg/__init__.py", line 895, in __main__.DenseMatrix.__str__
Failed example:
print(dm)
Expected:
DenseMatrix([[ 0., 2.],
[ 1., 3.]])
Got:
DenseMatrix([[0., 2.],
[1., 3.]])
**********************************************************************
File "/.../spark/python/pyspark/ml/linalg/__init__.py", line 899, in __main__.DenseMatrix.__str__
Failed example:
print(dm)
Expected:
DenseMatrix([[ 0., 1.],
[ 2., 3.]])
Got:
DenseMatrix([[0., 1.],
[2., 3.]])
**********************************************************************
File "/.../spark/python/pyspark/ml/linalg/__init__.py", line 939, in __main__.DenseMatrix.toArray
Failed example:
m.toArray()
Expected:
array([[ 0., 2.],
[ 1., 3.]])
Got:
array([[0., 2.],
[1., 3.]])
**********************************************************************
File "/.../spark/python/pyspark/ml/linalg/__init__.py", line 324, in __main__.DenseVector.dot
Failed example:
dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F'))
Expected:
array([ 5., 11.])
Got:
array([ 5., 11.])
**********************************************************************
File "/.../spark/python/pyspark/ml/linalg/__init__.py", line 567, in __main__.SparseVector.dot
Failed example:
a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]))
Expected:
array([ 22., 22.])
Got:
array([22., 22.])
```
See [release note](https://docs.scipy.org/doc/numpy-1.14.0/release.html#compatibility-notes).
## How was this patch tested?
Manually tested:
```
$ ./run-tests --python-executables=python3.6,python2.7 --modules=pyspark-ml,pyspark-mllib
Running PySpark tests. Output is in /.../spark/python/unit-tests.log
Will test against the following Python executables: ['python3.6', 'python2.7']
Will test the following Python modules: ['pyspark-ml', 'pyspark-mllib']
Starting test(python2.7): pyspark.mllib.tests
Starting test(python2.7): pyspark.ml.classification
Starting test(python3.6): pyspark.mllib.tests
Starting test(python2.7): pyspark.ml.clustering
Finished test(python2.7): pyspark.ml.clustering (54s)
Starting test(python2.7): pyspark.ml.evaluation
Finished test(python2.7): pyspark.ml.classification (74s)
Starting test(python2.7): pyspark.ml.feature
Finished test(python2.7): pyspark.ml.evaluation (27s)
Starting test(python2.7): pyspark.ml.fpm
Finished test(python2.7): pyspark.ml.fpm (0s)
Starting test(python2.7): pyspark.ml.image
Finished test(python2.7): pyspark.ml.image (17s)
Starting test(python2.7): pyspark.ml.linalg.__init__
Finished test(python2.7): pyspark.ml.linalg.__init__ (1s)
Starting test(python2.7): pyspark.ml.recommendation
Finished test(python2.7): pyspark.ml.feature (76s)
Starting test(python2.7): pyspark.ml.regression
Finished test(python2.7): pyspark.ml.recommendation (69s)
Starting test(python2.7): pyspark.ml.stat
Finished test(python2.7): pyspark.ml.regression (45s)
Starting test(python2.7): pyspark.ml.tests
Finished test(python2.7): pyspark.ml.stat (28s)
Starting test(python2.7): pyspark.ml.tuning
Finished test(python2.7): pyspark.ml.tuning (20s)
Starting test(python2.7): pyspark.mllib.classification
Finished test(python2.7): pyspark.mllib.classification (31s)
Starting test(python2.7): pyspark.mllib.clustering
Finished test(python2.7): pyspark.mllib.tests (260s)
Starting test(python2.7): pyspark.mllib.evaluation
Finished test(python3.6): pyspark.mllib.tests (266s)
Starting test(python2.7): pyspark.mllib.feature
Finished test(python2.7): pyspark.mllib.evaluation (21s)
Starting test(python2.7): pyspark.mllib.fpm
Finished test(python2.7): pyspark.mllib.feature (38s)
Starting test(python2.7): pyspark.mllib.linalg.__init__
Finished test(python2.7): pyspark.mllib.linalg.__init__ (1s)
Starting test(python2.7): pyspark.mllib.linalg.distributed
Finished test(python2.7): pyspark.mllib.fpm (34s)
Starting test(python2.7): pyspark.mllib.random
Finished test(python2.7): pyspark.mllib.clustering (64s)
Starting test(python2.7): pyspark.mllib.recommendation
Finished test(python2.7): pyspark.mllib.random (15s)
Starting test(python2.7): pyspark.mllib.regression
Finished test(python2.7): pyspark.mllib.linalg.distributed (47s)
Starting test(python2.7): pyspark.mllib.stat.KernelDensity
Finished test(python2.7): pyspark.mllib.stat.KernelDensity (0s)
Starting test(python2.7): pyspark.mllib.stat._statistics
Finished test(python2.7): pyspark.mllib.recommendation (40s)
Starting test(python2.7): pyspark.mllib.tree
Finished test(python2.7): pyspark.mllib.regression (38s)
Starting test(python2.7): pyspark.mllib.util
Finished test(python2.7): pyspark.mllib.stat._statistics (19s)
Starting test(python3.6): pyspark.ml.classification
Finished test(python2.7): pyspark.mllib.tree (26s)
Starting test(python3.6): pyspark.ml.clustering
Finished test(python2.7): pyspark.mllib.util (27s)
Starting test(python3.6): pyspark.ml.evaluation
Finished test(python3.6): pyspark.ml.evaluation (30s)
Starting test(python3.6): pyspark.ml.feature
Finished test(python2.7): pyspark.ml.tests (234s)
Starting test(python3.6): pyspark.ml.fpm
Finished test(python3.6): pyspark.ml.fpm (1s)
Starting test(python3.6): pyspark.ml.image
Finished test(python3.6): pyspark.ml.clustering (55s)
Starting test(python3.6): pyspark.ml.linalg.__init__
Finished test(python3.6): pyspark.ml.linalg.__init__ (0s)
Starting test(python3.6): pyspark.ml.recommendation
Finished test(python3.6): pyspark.ml.classification (71s)
Starting test(python3.6): pyspark.ml.regression
Finished test(python3.6): pyspark.ml.image (18s)
Starting test(python3.6): pyspark.ml.stat
Finished test(python3.6): pyspark.ml.stat (37s)
Starting test(python3.6): pyspark.ml.tests
Finished test(python3.6): pyspark.ml.regression (59s)
Starting test(python3.6): pyspark.ml.tuning
Finished test(python3.6): pyspark.ml.feature (93s)
Starting test(python3.6): pyspark.mllib.classification
Finished test(python3.6): pyspark.ml.recommendation (83s)
Starting test(python3.6): pyspark.mllib.clustering
Finished test(python3.6): pyspark.ml.tuning (29s)
Starting test(python3.6): pyspark.mllib.evaluation
Finished test(python3.6): pyspark.mllib.evaluation (26s)
Starting test(python3.6): pyspark.mllib.feature
Finished test(python3.6): pyspark.mllib.classification (43s)
Starting test(python3.6): pyspark.mllib.fpm
Finished test(python3.6): pyspark.mllib.clustering (81s)
Starting test(python3.6): pyspark.mllib.linalg.__init__
Finished test(python3.6): pyspark.mllib.linalg.__init__ (2s)
Starting test(python3.6): pyspark.mllib.linalg.distributed
Finished test(python3.6): pyspark.mllib.fpm (48s)
Starting test(python3.6): pyspark.mllib.random
Finished test(python3.6): pyspark.mllib.feature (54s)
Starting test(python3.6): pyspark.mllib.recommendation
Finished test(python3.6): pyspark.mllib.random (18s)
Starting test(python3.6): pyspark.mllib.regression
Finished test(python3.6): pyspark.mllib.linalg.distributed (55s)
Starting test(python3.6): pyspark.mllib.stat.KernelDensity
Finished test(python3.6): pyspark.mllib.stat.KernelDensity (1s)
Starting test(python3.6): pyspark.mllib.stat._statistics
Finished test(python3.6): pyspark.mllib.recommendation (51s)
Starting test(python3.6): pyspark.mllib.tree
Finished test(python3.6): pyspark.mllib.regression (45s)
Starting test(python3.6): pyspark.mllib.util
Finished test(python3.6): pyspark.mllib.stat._statistics (21s)
Finished test(python3.6): pyspark.mllib.tree (27s)
Finished test(python3.6): pyspark.mllib.util (27s)
Finished test(python3.6): pyspark.ml.tests (264s)
```
Author: hyukjinkwon <gurwls223@apache.org>
Closes apache#21715 from HyukjinKwon/SPARK-24740.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
What changes were proposed in this pull request?
This PR proposes to make PySpark's tests compatible with NumPy 0.14+
NumPy 0.14.x introduced rather radical changes about its string representation.
For example, the tests below are failed:
See release note.
How was this patch tested?
Manually tested: