Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions python/pyspark/sql/connect/client/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
Dict,
Set,
NoReturn,
Mapping,
cast,
TYPE_CHECKING,
Type,
Expand Down Expand Up @@ -1576,6 +1577,10 @@ def get_configs(self, *keys: str) -> Tuple[Optional[str], ...]:
configs = dict(self.config(op).pairs)
return tuple(configs.get(key) for key in keys)

def get_config_dict(self, *keys: str) -> Mapping[str, Optional[str]]:
op = pb2.ConfigRequest.Operation(get=pb2.ConfigRequest.Get(keys=keys))
return dict(self.config(op).pairs)

def get_config_with_defaults(
self, *pairs: Tuple[str, Optional[str]]
) -> Tuple[Optional[str], ...]:
Expand Down
57 changes: 34 additions & 23 deletions python/pyspark/sql/connect/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
# limitations under the License.
#
from pyspark.sql.connect.utils import check_dependencies
from pyspark.sql.utils import is_timestamp_ntz_preferred

check_dependencies(__name__)

Expand All @@ -37,6 +36,7 @@
cast,
overload,
Iterable,
Mapping,
TYPE_CHECKING,
ClassVar,
)
Expand Down Expand Up @@ -407,7 +407,10 @@ def clearProgressHandlers(self) -> None:
clearProgressHandlers.__doc__ = PySparkSession.clearProgressHandlers.__doc__

def _inferSchemaFromList(
self, data: Iterable[Any], names: Optional[List[str]] = None
self,
data: Iterable[Any],
names: Optional[List[str]],
configs: Mapping[str, Optional[str]],
) -> StructType:
"""
Infer schema from list of Row, dict, or tuple.
Expand All @@ -422,12 +425,12 @@ def _inferSchemaFromList(
infer_dict_as_struct,
infer_array_from_first_element,
infer_map_from_first_pair,
prefer_timestamp_ntz,
) = self._client.get_configs(
"spark.sql.pyspark.inferNestedDictAsStruct.enabled",
"spark.sql.pyspark.legacy.inferArrayTypeFromFirstElement.enabled",
"spark.sql.pyspark.legacy.inferMapTypeFromFirstPair.enabled",
"spark.sql.timestampType",
prefer_timestamp,
) = (
configs["spark.sql.pyspark.inferNestedDictAsStruct.enabled"],
configs["spark.sql.pyspark.legacy.inferArrayTypeFromFirstElement.enabled"],
configs["spark.sql.pyspark.legacy.inferMapTypeFromFirstPair.enabled"],
configs["spark.sql.timestampType"],
)
return functools.reduce(
_merge_type,
Expand All @@ -438,7 +441,7 @@ def _inferSchemaFromList(
infer_dict_as_struct=(infer_dict_as_struct == "true"),
infer_array_from_first_element=(infer_array_from_first_element == "true"),
infer_map_from_first_pair=(infer_map_from_first_pair == "true"),
prefer_timestamp_ntz=(prefer_timestamp_ntz == "TIMESTAMP_NTZ"),
prefer_timestamp_ntz=(prefer_timestamp == "TIMESTAMP_NTZ"),
)
for row in data
),
Expand Down Expand Up @@ -508,8 +511,21 @@ def createDataFrame(
messageParameters={},
)

# Get all related configs in a batch
configs = self._client.get_config_dict(
"spark.sql.timestampType",
"spark.sql.session.timeZone",
"spark.sql.session.localRelationCacheThreshold",
"spark.sql.execution.pandas.convertToArrowArraySafely",
"spark.sql.execution.pandas.inferPandasDictAsMap",
"spark.sql.pyspark.inferNestedDictAsStruct.enabled",
"spark.sql.pyspark.legacy.inferArrayTypeFromFirstElement.enabled",
"spark.sql.pyspark.legacy.inferMapTypeFromFirstPair.enabled",
)
timezone = configs["spark.sql.session.timeZone"]
prefer_timestamp = configs["spark.sql.timestampType"]

_table: Optional[pa.Table] = None
timezone: Optional[str] = None

if isinstance(data, pd.DataFrame):
# Logic was borrowed from `_create_from_pandas_with_arrow` in
Expand All @@ -519,8 +535,7 @@ def createDataFrame(
if schema is None:
_cols = [str(x) if not isinstance(x, str) else x for x in data.columns]
infer_pandas_dict_as_map = (
str(self.conf.get("spark.sql.execution.pandas.inferPandasDictAsMap")).lower()
== "true"
configs["spark.sql.execution.pandas.inferPandasDictAsMap"] == "true"
)
if infer_pandas_dict_as_map:
struct = StructType()
Expand Down Expand Up @@ -572,9 +587,7 @@ def createDataFrame(
]
arrow_types = [to_arrow_type(dt) if dt is not None else None for dt in spark_types]

timezone, safecheck = self._client.get_configs(
"spark.sql.session.timeZone", "spark.sql.execution.pandas.convertToArrowArraySafely"
)
safecheck = configs["spark.sql.execution.pandas.convertToArrowArraySafely"]

ser = ArrowStreamPandasSerializer(cast(str, timezone), safecheck == "true")

Expand All @@ -596,10 +609,6 @@ def createDataFrame(
).cast(arrow_schema)

elif isinstance(data, pa.Table):
prefer_timestamp_ntz = is_timestamp_ntz_preferred()

(timezone,) = self._client.get_configs("spark.sql.session.timeZone")

# If no schema supplied by user then get the names of columns only
if schema is None:
_cols = data.column_names
Expand All @@ -609,7 +618,9 @@ def createDataFrame(
_num_cols = len(_cols)

if not isinstance(schema, StructType):
schema = from_arrow_schema(data.schema, prefer_timestamp_ntz=prefer_timestamp_ntz)
schema = from_arrow_schema(
data.schema, prefer_timestamp_ntz=prefer_timestamp == "TIMESTAMP_NTZ"
)

_table = (
_check_arrow_table_timestamps_localize(data, schema, True, timezone)
Expand Down Expand Up @@ -671,7 +682,7 @@ def createDataFrame(
if not isinstance(_schema, StructType):
_schema = StructType().add("value", _schema)
else:
_schema = self._inferSchemaFromList(_data, _cols)
_schema = self._inferSchemaFromList(_data, _cols, configs)

if _cols is not None and cast(int, _num_cols) < len(_cols):
_num_cols = len(_cols)
Expand Down Expand Up @@ -706,9 +717,9 @@ def createDataFrame(
else:
local_relation = LocalRelation(_table)

cache_threshold = self._client.get_configs("spark.sql.session.localRelationCacheThreshold")
cache_threshold = configs["spark.sql.session.localRelationCacheThreshold"]
plan: LogicalPlan = local_relation
if cache_threshold[0] is not None and int(cache_threshold[0]) <= _table.nbytes:
if cache_threshold is not None and int(cache_threshold) <= _table.nbytes:
plan = CachedLocalRelation(self._cache_local_relation(local_relation))

df = DataFrame(plan, self)
Expand Down