Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 3 additions & 33 deletions examples/audio-classification/python/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,41 +13,13 @@

# Global state
AUDIO_DIR = "/app/assets/audio"
audio_classifier = None

def get_audio_classifier():
"""Lazy initialization of audio classifier"""
global audio_classifier
if audio_classifier is None:
try:
from arduino.app_peripherals.microphone import Microphone
try:
audio_classifier = AudioClassification(mic=None)
except:
class MockMicrophone:
def __init__(self):
self.sample_rate = 16000
self.channels = 1
def start_recording(self): pass
def stop_recording(self): pass
def read(self): return b''
mock_mic = MockMicrophone()
audio_classifier = AudioClassification(mic=mock_mic)
except Exception as e:
raise e
return audio_classifier

def parse_data(data):
"""Parse incoming data - handle both string and dict"""
if isinstance(data, str):
try:
return json.loads(data)
except:
return {}
return json.loads(data)
return data if isinstance(data, dict) else {}

def on_run_classification(sid, data):
"""Run classification"""
try:
parsed_data = parse_data(data)
confidence = parsed_data.get('confidence', 0.5)
Expand All @@ -65,19 +37,17 @@ def on_run_classification(sid, data):
return
with open(file_path, "rb") as f:
input_audio = io.BytesIO(f.read())

if input_audio:
classifier = get_audio_classifier()
start_time = time.time() * 1000
results = classifier.classify_from_file(input_audio, confidence)
results = AudioClassification.classify_from_file(input_audio, confidence)
diff = time.time() * 1000 - start_time

response_data = { 'results': results, 'processing_time': diff }
if results:
response_data['classification'] = { 'class_name': results["class_name"], 'confidence': results["confidence"] }
else:
response_data['error'] = "No objects detected in the audio. Try to lower the confidence threshold."

ui.send_message('classification_complete', response_data, sid)
else:
ui.send_message('classification_error', {'message': "No audio available for classification"}, sid)
Expand Down