|
| 1 | +# algoritma ini adalah merupakan algoritma machine learning |
| 2 | +# sederhana dan mudah diterapkan yang dapat digunakan untuk |
| 3 | +# menyelesaikan masalah klasifikasi dan regresi |
| 4 | +# algoritma KNN menggunakan sejumlah paramater |
| 5 | +# yang fleksibel, dan jumlah parameter seringkali bertambah |
| 6 | +# seiring data yang semakin banyak. |
| 7 | +# algoritma KNN juga bersifat lazy learning, yang artinya tidak |
| 8 | +# menggunaakan titik data training untuk membuat model. singkatnya |
| 9 | +# algoritma ini tidak ada fase training, kalaupun juga sangat minim. |
| 10 | +# referensi |
| 11 | +# - https://www.ibm.com/topics/knn |
| 12 | + |
| 13 | +from collections import Counter |
| 14 | + |
| 15 | +import numpy as np |
| 16 | +from sklearn import datasets |
| 17 | +from sklearn.model_selection import train_test_split |
| 18 | + |
| 19 | +data = datasets.load_iris() |
| 20 | + |
| 21 | +X = np.array(data["data"]) |
| 22 | +y = np.array(data["target"]) |
| 23 | +classes = data["target_names"] |
| 24 | + |
| 25 | +X_train, X_train, y_train, y_test = train_test_split(X, y) |
| 26 | + |
| 27 | + |
| 28 | +def euclidean_distance(a, b): |
| 29 | + """ |
| 30 | + memberikan jarak antara dua euclidean |
| 31 | + >>> euclidean_distance([0, 0], [3, 4]) |
| 32 | + 5.0 |
| 33 | + """ |
| 34 | + return np.linalg.norm(np.array(a) - np.array(b)) |
| 35 | + |
| 36 | + |
| 37 | +def klasifikasi(train_data, train_target, classes, point, k=5): |
| 38 | + """ |
| 39 | + mengklasifikasikan titik algoritma menggunakan algortima |
| 40 | + KNN, k titik terdekat ditemukan (diurutkan dalam urutan |
| 41 | + menaik jarak euclidean) |
| 42 | +
|
| 43 | + >>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]] |
| 44 | + >>> y_train = [0, 0, 0, 0, 1, 1, 1] |
| 45 | + >>> classes = ['A','B']; point = [1.2,1.2] |
| 46 | + >>> klasifikasi(X_train, y_train, classes, point) |
| 47 | + 'A' |
| 48 | + """ |
| 49 | + data = zip(train_data, train_target) |
| 50 | + jarak = [] |
| 51 | + for data_point in data: |
| 52 | + jarak_1 = euclidean_distance(data_point[0], point) |
| 53 | + jarak.append((jarak_1, data_point[1])) |
| 54 | + votes = [i[1] for i in sorted(jarak)[:k]] |
| 55 | + hasil = Counter(votes).most_common(1)[0][0] |
| 56 | + return classes[hasil] |
| 57 | + |
| 58 | + |
| 59 | +if __name__ == "__main__": |
| 60 | + print(klasifikasi(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) |
0 commit comments