Skip to content

Make ONNXmodel  #1

@big-chan

Description

@big-chan
import torch
from model import SSD300
from apex.parallel.LARC import LARC
from apex import amp
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
def load_model_weight(model, model_path):
    model_checkpoint=torch.load(model_path)["model"]
    model.load_state_dict(model_checkpoint.state_dict())
    #model = amp.initialize(model, opt_level='O2')
    model = model.eval()
    #model=model.to("cpu")
    return model
def export_onnx_model(model, input_shape, onnx_path, input_names=None, output_names=None, dynamic_axes=None):
    inputs_R = torch.ones((1,3,512,640)).to("cuda")
    inputs_T = torch.ones((1,1,512,640)).to("cuda")
    #import pdb;pdb.set_trace()
    #model(inputs)
    torch.onnx.export(model, (inputs_R,inputs_T), onnx_path, input_names=input_names, output_names=output_names)
    
if __name__ == "__main__":

    checkpoint ='./checkpoint_ssd300.pth.tar083'

    model_path = "model_checkpoint.pth"
    model = SSD300(2)
    model=model.to("cuda")
    model = load_model_weight(model, checkpoint)

    input_shape = (1, 1, 512, 640)
    onnx_path = "halfway.onnx"
    # input_names=['input']
    # output_names=['output']
    # dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}}
    export_onnx_model(model, input_shape, onnx_path)

it was based this site

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions