Skip to content

Lightweight RAG library with ONNX embeddings, DuckDB storage, and three-tier hybrid search (semantic + BM25 + FTS

License

Notifications You must be signed in to change notification settings

bigbag/microrag

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MicroRAG

CI pypi downloads versions license

A feature-rich, universal RAG library for Python with ONNX-backed embeddings and DuckDB storage.

Features

  • Flexible embedding backends - Choose between sentence-transformers (ONNX-optimized) or FastEmbed (lightweight)
  • DuckDB storage - Persistent vector storage with HNSW indexes for fast similarity search
  • Three-tier hybrid search - Combines semantic, BM25, and full-text search with RRF fusion
  • Query preprocessing - Abbreviation expansion and stopword removal for better search
  • Flexible document input - Accept strings, dicts, or Document objects
  • Text chunking - Automatic chunking with sentence boundary detection

Why ONNX?

MicroRAG uses ONNX (Open Neural Network Exchange) format for embedding models:

  • Faster inference - ONNX Runtime provides optimized CPU execution, often 2-3x faster than PyTorch
  • Smaller footprint - No need for full PyTorch/TensorFlow installation in production
  • Cross-platform - Same model runs on any platform without framework dependencies
  • Quantization support - Easy to use INT8/FP16 quantized models for even faster inference

Installation

# Core (no embedding backend - bring your own)
pip install microrag

# With sentence-transformers backend (ONNX-optimized)
pip install microrag[sentence-transformers]

# With FastEmbed backend (lightweight, fast)
pip install microrag[fastembed]

# All backends
pip install microrag[all]

# For CPU-only PyTorch (with sentence-transformers)
pip install microrag[sentence-transformers,cpu]

Quick Start

With sentence-transformers (local model)

from microrag import MicroRAG, RAGConfig

config = RAGConfig(
    model_path="/path/to/all-MiniLM-L6-v2",
    embedding_backend="sentence-transformers",  # or "auto"
    db_path="./rag.duckdb",
    embedding_dim=384,
)

with MicroRAG(config) as rag:
    # Add documents (strings, dicts, or Document objects)
    rag.add_documents([
        "Machine learning is a subset of artificial intelligence.",
        {"content": "Deep learning uses neural networks.", "metadata": {"source": "wiki"}},
    ])

    # Build search indexes
    rag.build_index()

    # Search
    results = rag.search("neural networks", top_k=5)
    for r in results:
        print(f"{r.score:.3f}: {r.content}")

With FastEmbed (auto-download)

from microrag import MicroRAG, RAGConfig

config = RAGConfig(
    model_path="BAAI/bge-small-en-v1.5",  # Model name, auto-downloaded
    embedding_backend="fastembed",
)

with MicroRAG(config) as rag:
    rag.add_documents(["Machine learning is a subset of AI."])
    rag.build_index()
    results = rag.search("neural networks")

Search Pipeline

MicroRAG uses a three-tier hybrid search architecture that combines multiple retrieval methods for better results:

Query: "ML techniques"
         │
         ▼
┌─────────────────────────────────────┐
│      Query Preprocessing            │
│  • Normalize whitespace             │
│  • Expand abbreviations (ML→machine │
│    learning)                        │
│  • Tokenize for BM25                │
└─────────────────────────────────────┘
         │
         ▼
┌─────────────────────────────────────┐
│      Parallel Search                │
│                                     │
│  ┌──────────┐  ┌──────────┐  ┌────────────┐
│  │ Semantic │  │  BM25    │  │    FTS     │
│  │  Search  │  │  Search  │  │   Search   │
│  │ (Vector) │  │(Keywords)│  │ (Stemmed)  │
│  └────┬─────┘  └────┬─────┘  └─────┬──────┘
│       │             │              │
│       ▼             ▼              ▼
│    Results       Results        Results
│   + scores      + scores       + scores
└─────────────────────────────────────┘
         │
         ▼
┌─────────────────────────────────────┐
│    Reciprocal Rank Fusion (RRF)     │
│                                     │
│  score = Σ 1/(k + rank_i)           │
│                                     │
│  Combines rankings from all methods │
│  with configurable weighting        │
└─────────────────────────────────────┘
         │
         ▼
      Final ranked results

Search Components

  • Semantic - HNSW vector similarity; understands meaning and context
  • BM25 - Term frequency scoring; exact keyword matching
  • FTS - DuckDB full-text search; stemming and linguistic matching

Why Hybrid Search?

Each search method has different strengths:

  • Semantic search finds conceptually similar documents even with different wording
  • BM25 excels at finding exact keyword matches
  • FTS handles word variations through stemming

By combining all three with RRF fusion, MicroRAG achieves better recall and precision than any single method alone.

Filtering Irrelevant Results

By default, search returns the top-k results regardless of relevance. For queries like "111111" or random gibberish, the system will still return documents (just with lower scores). To filter out irrelevant results, use similarity_threshold.

Understanding RRF scores: RRF fusion produces scores typically in the 0.01-0.03 range, not 0-1 like raw cosine similarity. This is because RRF scores are based on rank positions: score = Σ weight / (k + rank).

Finding the right threshold:

# Test with your data to find appropriate threshold
results = rag.search("relevant query", threshold=0.0)
print(f"Relevant score: {results[0].score}")  # e.g., 0.016

results = rag.search("gibberish123", threshold=0.0)
print(f"Irrelevant score: {results[0].score}")  # e.g., 0.011

# Set threshold between irrelevant and relevant scores
config = RAGConfig(
    model_path="...",
    similarity_threshold=0.014,  # Filters gibberish, keeps relevant
)

Typical thresholds:

  • 0.0 - Return all results (no filtering)
  • 0.010-0.015 - Filter obvious gibberish while keeping most relevant results
  • 0.015-0.020 - Stricter filtering, may reduce recall for edge cases

Configuration

from microrag import RAGConfig

config = RAGConfig(
    # Embedding
    model_path="/path/to/model",      # Model path or name
    embedding_backend="auto",         # "auto", "sentence-transformers", "fastembed"

    # Storage
    db_path=":memory:",               # DuckDB path (":memory:" for in-memory)
    embedding_dim=384,                # Embedding vector dimension

    # Chunking
    chunk_size=1000,                  # Max characters per chunk
    chunk_overlap=200,                # Overlap between chunks

    # Search
    hybrid_enabled=True,              # Enable hybrid search
    hybrid_alpha=0.7,                 # Semantic weight (0-1)
    similarity_threshold=0.014,       # Min score threshold (RRF scores are ~0.01-0.03)

    # Query processing
    abbreviations={"ML": "machine learning"},  # Query expansion
    remove_stopwords=True,            # Remove stopwords for BM25

    # HNSW tuning
    hnsw_ef_construction=200,         # Build-time parameter
    hnsw_ef_search=100,               # Search-time parameter
    hnsw_enable_persistence=False,    # Experimental index persistence
)

Configuration Options

Embedding:

  • model_path (str) - Model path (sentence-transformers) or model name (fastembed)
  • embedding_backend (str, default: "auto") - Backend: "auto", "sentence-transformers", "fastembed"
  • model_file (str, default: None) - ONNX filename (sentence-transformers only)
  • fastembed_cache_dir (str, default: None) - Cache directory (fastembed only)

Storage:

  • db_path (str, default: :memory:) - DuckDB database path
  • embedding_dim (int, default: 384) - Embedding vector dimension

Chunking:

  • chunk_size (int, default: 1000) - Text chunking size in characters
  • chunk_overlap (int, default: 200) - Overlap between chunks

Search:

  • hybrid_enabled (bool, default: True) - Enable hybrid search
  • hybrid_alpha (float, default: 0.7) - Semantic weight in fusion (0-1)
  • similarity_threshold (float, default: 0.4) - Minimum score to return (see Filtering Irrelevant Results)

Query Processing:

  • abbreviations (dict, default: None) - Query expansion mapping
  • stopwords (set, default: English) - Stopwords for BM25 tokenization
  • remove_stopwords (bool, default: True) - Enable stopword removal

HNSW Tuning:

  • hnsw_ef_construction (int, default: 200) - HNSW build parameter
  • hnsw_ef_search (int, default: 100) - HNSW search parameter
  • hnsw_enable_persistence (bool, default: False) - Enable experimental HNSW index persistence

API Reference

MicroRAG

Main class for RAG operations.

from microrag import MicroRAG, RAGConfig

config = RAGConfig(model_path="/path/to/model")

# Use as context manager (recommended)
with MicroRAG(config) as rag:
    rag.add_documents([...])
    rag.build_index()
    results = rag.search("query")

# Or manage lifecycle manually
rag = MicroRAG(config)
try:
    # ... use rag
finally:
    rag.close()

Methods:

  • add_documents(docs, chunk=True) - Add documents (str, dict, or Document)
  • build_index() - Build HNSW, BM25, and FTS indexes
  • search(query, top_k=10, threshold=None, hybrid=None) - Search documents
  • get_document(doc_id) - Get document by ID
  • get_all_documents() - Get all documents
  • count() - Get document count
  • clear() - Remove all documents
  • close() - Close resources

Document

Document data model.

from microrag import Document

doc = Document(
    id="doc1",                    # Optional, auto-generated if not provided
    content="Document text...",   # Required
    metadata={"source": "wiki"},  # Optional metadata
)

SearchResult

Search result with score and document data.

results = rag.search("query")

for result in results:
    print(result.score)      # Similarity score
    print(result.content)    # Document content
    print(result.metadata)   # Document metadata
    print(result.document)   # Full Document object

Adding Documents

MicroRAG accepts documents in multiple formats:

# Strings
rag.add_documents([
    "First document content",
    "Second document content",
])

# Dicts with metadata
rag.add_documents([
    {"content": "Document text", "metadata": {"source": "file.txt"}},
    {"id": "custom_id", "content": "Another document"},
])

# Document objects
from microrag import Document

rag.add_documents([
    Document(id="doc1", content="Text", metadata={"key": "value"}),
])

# Disable chunking for pre-chunked content
rag.add_documents(["Already chunked text"], chunk=False)

Examples

See the examples/ directory for complete working examples:

  • basic_usage.py - Core workflow: adding documents, building indexes, searching
  • advanced_config.py - Custom abbreviations, hybrid search tuning, config variants
  • faq_search.py - FAQ/knowledge base search with metadata filtering

Run examples with:

make example name=basic_usage
make example name=advanced_config
make example name=faq_search

Development

# Clone and install
git clone https://github.com/yourname/microrag.git
cd microrag
uv sync --group dev

# Run tests
uv run pytest

# Run linting
uv run ruff check src/ tests/
uv run mypy src/

# Format code
uv run ruff format src/ tests/

License

MIT License - see LICENSE file.

About

Lightweight RAG library with ONNX embeddings, DuckDB storage, and three-tier hybrid search (semantic + BM25 + FTS

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published