Skip to content

blender-head/python-numpy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NumPy (Numerical Python) is a fundamental Python library for scientific computing and numerical operations. It provides support for large, multi-dimensional arrays and matrices, along with a vast collection of high-level mathematical functions to operate on these arrays efficiently.

Key Features of NumPy:

  1. ndarray (N-dimensional array):

    • NumPy's core feature is the ndarray, a fast and memory-efficient array object for handling large datasets.
    • Supports vectorized operations (eliminating the need for loops).
  2. Mathematical Functions:

    • Provides linear algebra, Fourier transforms, random number generation, and more.
    • Optimized for performance (written in C and Fortran).
  3. Broadcasting:

    • Allows operations on arrays of different shapes.
  4. Interoperability:

    • Works well with other libraries like Pandas, SciPy, Matplotlib, TensorFlow, and PyTorch.
  5. Memory Efficiency:

    • Uses contiguous memory blocks, making it faster than Python lists.

Tutorial Source

Numpy Full Course

File List

  • 00_numpy_intro.ipynb:
    • NumPy introduction
  • 01_creating_arrays.ipynb:
    • NumPy array definition
    • Understanding Dimensions in Arrays
    • Create Array Using arange
    • Create Array Using linspace
    • Creating Array Using zeros
    • Creating Array Using ones
    • Get Array Size
    • Create Array Using random
  • 03_slicing_and_indexing.ipynb:
    • Basic Indexing
    • Slicing Array
    • Advanced Indexing
    • Key Differences Between Indexing & Slicing
    • Notes on Slicing and Indexing
  • 04_shaping_arrays.ipynb:
    • Array Shape concept
    • Check array shape using shape
    • Reshape an array using reshape
    • Flatten an array using flatten
    • Resize an array using resize
    • Transpose an array using transpose and ndarray.T attribute
    • Swap axes an array swapaxes
  • 05_stacking_and_splitting.ipynb:
    • Stacking array using:
      • stack
      • vstack
      • dstack
    • Splitting array using:
      • split
      • vsplit
      • hsplit
      • dsplit
    • Real-World Applications of Stacking and Splitting Arrays in NumPy
  • copying_array.ipynb:
    • Copying array using:
      • copy
      • np.copy
  • 07_basic_math.ipynb:
    • Arithmetic Operations using :
      • add
      • subtract
      • multiply
      • divide
      • power
      • sqrt
      • sin
      • sbs
    • Aggregation Operations using:
      • sum
      • min
      • max
      • mean
      • std
      • argmax
    • Matrix Operations using:
      • dot
    • Cumulative Sum using:
      • cumsum
    • Logarithmic Operations using:
      • log
      • log2
      • log10
    • Greatest Common Divisor (GCD) using:
      • gcd.reduce
    • Least Common Multiple (LCM) using:
      • lcm.reduce
    • Rounding Functions using:
      • ceil
      • floor
  • 08_numpy_and_panda.ipynb:
    • todo
  • 09_statistic_functions.ipynb:
    • Calculate mean using mean
    • Calculate median using median
    • Calculate variance using var
    • Calculate standard deviation using std
    • Calculate minimun using min
    • Calculate maximum using max
    • Calculate product using prod
    • Calculate quantiles using quantile
    • Calculate correlation using corrcoef
    • Calculate covariance using cov
    • Create histogram using histogram and histogram2d
    • Calculate convolution using convolve
  • 10_trigonometric_functions.ipynb:
    • Basic Trigonometric Functions:
      • sin
      • cos
      • tan
    • Inverse Trigonometric Functions:
      • arcsin
      • arccos
      • arctan
      • arctan2
    • Hyperbolic Trigonometric Functions:
      • sinh
      • cosh
      • tanh
    • Angle Conversion Functions:
      • deg2rad
      • rad2deg
  • 11_matrix_functions.ipynb:
    • Matrix Creation:
      • numpy.array()
      • numpy.matrix()
      • numpy.eye()
      • numpy.zeros()
      • numpy.ones()
    • Matrix Operations:
      • numpy.dot()
      • numpy.transpose() or .T
      • numpy.linalg.inv()
      • numpy.linalg.det()
      • numpy.trace()
      • numpy.linalg.multi_dot
    • Eigenvalues & Eigenvectors:
      • numpy.linalg.eig()
      • numpy.linalg.eigvals()
    • Matrix Decomposition:
      • numpy.linalg.svd()
      • numpy.linalg.qr()
      • numpy.linalg.cholesky()
    • Solving Linear Equations:
      • numpy.linalg.solve()
      • numpy.linalg.lstsq()
    • Matrix Norms:
      • numpy.linalg.norm()
    • Matrix Exponentiation
      • numpy.linalg.matrix_power()
  • 12_saving_and_loading.ipynb:
    • Saving NumPy Object using save
    • Loading Numpy Object using load
    • Saving Numpy Object as CSV using savetxt
    • Loading CSV file loadtxt
  • 13_numpy_financial.ipynb:
    • Install numpy_financial library pip install numpy-financial
    • Calculates the future value of an investment using fv function
    • Calculates the present value of an investment using pv function
    • Calculates the payment for a loan using pmt function
    • Calculates the net present value of a cash flow series using npv function
    • Calculates the internal rate of return for a series of cash flows using irr function
    • Calculates the number of periods for an investment using nper function
    • Calculates the interest rate per period using ratefunction
  • 14_comparison_functions.ipynb:
    • Comparison Functions:
      • numpy.equal or ==
      • numpy.not_equal or !=
      • numpy.greater or >
      • numpy.greater_equal or >=
      • numpy.less or <
      • numpy.less_equal or <=
      • numpy.array_equal
      • numpy.logical_and
      • numpy.logical_or
      • numpy.logical_not
      • numpy.isclose

About

python numpy tutorial

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •