Skip to content

[ICLR 2026] When Agents "Misremember" Collectively: Exploring the Mandela Effect in LLM-based Multi-Agent Systems

License

Notifications You must be signed in to change notification settings

bluedream02/Mandela-Effect

Repository files navigation

[ICLR 2026] When Agents “Misremember” Collectively: Exploring the Mandela Effect in LLM-based Multi-Agent Systems

EMNLP 2025 arXiv License

This is the official implementation of "When Agents 'Misremember' Collectively: Exploring the Mandela Effect in LLM-based Multi-Agent Systems" (ICLR 2026).

📑 Table of Contents

📌 Overview

The Mandela Effect is a phenomenon where groups collectively misremember verifiable facts, arising from social reinforcement and internalized misinformation. This repository introduces ManBench, a comprehensive benchmark designed to evaluate the Mandela effect in LLM-based multi-agent systems.

📦 Installation

git clone https://github.com/bluedream02/Mandela-Effect.git
cd Mandela-Effect
conda create -n mandela python=3.10 -y
conda activate mandela
pip install -r requirements.txt

Set up your API keys as environment variables:

export OPENAI_API_KEY="your-api-key"
export OPENAI_BASE_URL="https://api.openai.com/v1"

# Optional: for local models via Ollama
# Make sure Ollama is installed and running locally

🚀 Quick Start

Evaluation

Basic evaluation on a single task:

python eval.py --task_subset disambiguation_qa --max_samples 10 \
  --save_path output/disambiguation_qa_test \
  --model gpt-4o-mini --total_agents 5

Evaluate multiple tasks:

python eval.py --task_subset "disambiguation_qa,auto_categorization" \
  --max_samples 10 \
  --save_path output/multi_task_test \
  --model gpt-4o-mini --total_agents 5

Key arguments for eval.py:

  • --task_subset: Task(s) to evaluate (comma-separated) (default: all)
  • --max_samples: Maximum samples per task (default: all)
  • --save_path: Output directory
  • --model: Model name (default: gpt-4o-mini)
  • --total_agents: Number of agents (default: 5)
  • --use_cache: Use cached results to avoid redundant API calls during development. (default: True)
  • --data_folder: Data folder path (default: bbh_all_small)

Evaluate defense strategies:

python eval_defense.py --task_subset disambiguation_qa --max_samples 10 \
  --save_path output/defense_test \
  --model gpt-4o-mini --total_agents 5

Result Analysis

After running evaluation, analyze the results:

# Analyze with specific model and directory
python analyze.py --model gpt-4o-mini --input-dir output/disambiguation_qa_test

# Auto-detect output directories
python analyze.py --model gpt-4o-mini

# Results saved to output_evaluation/{model_name}.xlsx

Key arguments for analyze.py:

  • --model: Model name to analyze
  • --input-dir: Input directory (auto-detects output/* if not specified)
  • --output-dir: Output directory (default: output_evaluation)

🎁 Acknowledgement

This work builds upon several excellent open-source projects and related works:

  • Do as We Do, Not as You Think: the Conformity of Large Language Models (ICLR 2025) - Paper | GitHub
  • Exploring Prosocial Irrationality for LLM Agents: A Social Cognition View (ICLR 2025) - Paper | GitHub
  • Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View (ACL 2024)- Paper | GitHub
  • Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models (TMLR) - Paper | GitHub

We thank the authors for their valuable contributions to the community.

📖 Citation

If you find this work useful for your research, please cite our paper:

@misc{xu2026agentsmisremembercollectivelyexploring,
      title={When Agents "Misremember" Collectively: Exploring the Mandela Effect in LLM-based Multi-Agent Systems}, 
      author={Naen Xu and Hengyu An and Shuo Shi and Jinghuai Zhang and Chunyi Zhou and Changjiang Li and Tianyu Du and Zhihui Fu and Jun Wang and Shouling Ji},
      year={2026},
      eprint={2602.00428},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2602.00428}, 
}

About

[ICLR 2026] When Agents "Misremember" Collectively: Exploring the Mandela Effect in LLM-based Multi-Agent Systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages