A hands-on beginner→intermediate course for analysts and BI professionals. Build intuition, run tests, and ship insights with Python (Pandas/NumPy/SciPy/Matplotlib).
What you’ll learn
- Descriptive statistics and visualization
- Probability & common distributions
- Sampling, CLT, confidence intervals
- Hypothesis testing (t‑tests, chi‑square, ANOVA) & A/B testing
- Correlation and linear regression + diagnostics
- Case studies: churn, subscription funnels, forecasting
# 1) Create and activate a virtual env (optional)
python -m venv .venv && source .venv/bin/activate # Windows: .venv\Scripts\activate
# 2) Install deps
pip install -r requirements.txt
# 3) Start Jupyter
jupyter labOpen the notebooks in notebooks/ and follow the module order.
practical-stats-python-course/
datasets/
docs/
notebooks/
module1_intro/
module2_probability/
module3_sampling_clt/
module4_hypothesis_ab/
module5_regression/
module6_case_studies/
utils/
requirements.txt
README.md
Last generated: 2025-10-31T20:24:56Z