This is fully ready Docker container with:
- NumPy
- Pandas
- Sklearn
- Matplotlib
- Seaborn
- pyyaml
- h5py
- Jupyter
- Tensorflow
- Keras
- OpenCV 3
We're building this container on top of Ubuntu 16.04 Docker container (Dockerfile) and Anaconda Docker container (Dockerfile)
docker build -f Dockerfile . -t <tag name>Push the new docker image to your docker hub
$ docker tag first-image {docker-hub-username}/{default-repo-folder-name}:first-image
$ docker push {docker-hub-username}/{default-repo-folder-name}:first-image
We'll use notebooks forlder to store Jupyter Notebooks:
mkdir notebooksRun Docker container with the following command:
docker run -it -p 8888:8888 -p 6006:6006 -d -v $(pwd)/notebooks:/notebooks amaksimov/python_data_scienceWe're using following parameters:
-p 8888:8888to export Jupyter Web interface-p 6006:6006to export TensorflowDashboard Web interface-dto run Docker container in background-v notebooks:/notebooksto mount just created notebooks folder Docker inside container
Remove all container
docker rm `docker ps --no-trunc -aq` Check docker container details
docker inspect -f '{{.Name}} - {{.NetworkSettings.IPAddress }}' $(docker ps -aq)