A command-line tool for transcribing audio files, YouTube videos, and podcasts using Faster Whisper.
- ffmpeg
- Python 3.10+
At system level you need cuda 12 and cuddn.
sudo apt install libcublas12
sudo apt install cudnn9-cuda-12# Install dependencies and create virtual environment
uv sync
# Optional: Install globally as a CLI tool
uv tool install . --python 3.12uv run quill INPUT_SOURCE OUTPUT_FILE [--model MODEL] [--device DEVICE] [--language LANGUAGE]
# Examples:
uv run quill audio.mp3 transcript.txt
uv run quill https://youtube.com/watch?v=... transcript.txt
uv run quill https://example.com/audio.mp3 transcript.txt --model large
uv run quill podcast.mp3 output.txt --device cuda --language enOptions:
--model: Model size to use (tiny, base, small, medium, large). Default: medium--device: Device to use for inference (cpu, cuda). Default: cpu--language: Language code for transcription (e.g., en, fr, de). Default: auto-detect--timestamps, -t: Include timestamps in the transcription output
- Local audio files (mp3, wav, m4a, etc.)
- YouTube URLs
- Direct URLs to audio files
- Using CUDA-enabled GPU significantly improves transcription speed
- Larger models provide better accuracy but require more memory and processing time
- The 'medium' model provides a good balance between speed and accuracy for most use cases
Apache 2.0

