Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion R/aux_data_utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -274,7 +274,10 @@ daily_to_weekly_archive <- function(epi_arch,
as_tibble()
}
) %>%
as_epi_archive(compactify = TRUE)
# Always convert to data.frame after dplyr operations on data.table.
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
}


Expand Down
136 changes: 79 additions & 57 deletions scripts/covid_hosp_explore.R
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,9 @@ source("scripts/targets-exploration-common.R")
hhs_signal <- "confirmed_admissions_covid_1d"
if (!exists("ref_time_values_")) {
# Alternatively you can let slide_forecaster figure out ref_time_values
start_date <- as.Date("2023-10-04")
start_date <- as.Date("2023-11-08")
end_date <- as.Date("2024-04-24")
# end_date <- start_date + 7
date_step <- 7L
ref_time_values_ <- seq.Date(start_date, end_date, by = date_step)
}
Expand Down Expand Up @@ -62,12 +63,7 @@ forecaster_parameter_combinations_ <- rlang::list2(
),
pop_scaling = FALSE,
scale_method = "quantile",
center_method = "median",
nonlin_method = "quart_root",
filter_source = "",
filter_agg_level = "",
n_training = Inf,
drop_non_seasons = FALSE,
n_training = Inf
),
expand_grid(
forecaster = "scaled_pop",
Expand All @@ -93,12 +89,7 @@ forecaster_parameter_combinations_ <- rlang::list2(
),
pop_scaling = FALSE,
scale_method = "quantile",
center_method = "median",
nonlin_method = "quart_root",
filter_source = "",
filter_agg_level = "",
n_training = Inf,
drop_non_seasons = FALSE,
n_training = Inf
),
expand_grid(
forecaster = "scaled_pop",
Expand All @@ -124,12 +115,7 @@ forecaster_parameter_combinations_ <- rlang::list2(
),
pop_scaling = FALSE,
scale_method = "quantile",
center_method = "median",
nonlin_method = "quart_root",
filter_source = "",
filter_agg_level = "",
n_training = Inf,
drop_non_seasons = FALSE,
n_training = Inf
)
),
scled_pop_season = tidyr::expand_grid(
Expand All @@ -141,7 +127,13 @@ forecaster_parameter_combinations_ <- rlang::list2(
),
pop_scaling = FALSE,
n_training = Inf,
seasonal_method = list(c("covid"), c("window"), c("covid", "window"), c("climatological"), c("climatological", "window"))
seasonal_method = list(
c("covid"),
c("window"),
c("covid", "window"),
c("climatological"),
c("climatological", "window")
)
)
) %>%
map(function(x) {
Expand Down Expand Up @@ -178,16 +170,16 @@ scaled_pop_scaled <- list(
smooth_scaled <- list(
forecaster = "smoothed_scaled",
trainer = "quantreg",
lags =
# list(smoothed, sd)
list(c(0, 7, 14, 21, 28), c(0)),
# lags = list(smoothed, sd)
lags = list(c(0, 7, 14, 21, 28), c(0)),
smooth_width = as.difftime(2, units = "weeks"),
sd_width = as.difftime(4, units = "weeks"),
sd_mean_width = as.difftime(2, units = "weeks"),
pop_scaling = TRUE,
n_training = Inf
)
# Human-readable object to be used for inspecting the ensembles in the pipeline.
# fmt: skip
ensemble_parameter_combinations_ <- tribble(
~ensemble, ~ensemble_args, ~forecasters,
# mean forecaster
Expand Down Expand Up @@ -240,7 +232,12 @@ ensemble_parameter_combinations_ <- tribble(
) %>%
add_id(exclude = "forecasters")
# spoofing ensembles for right now
ensemble_parameter_combinations_ <- tibble::tibble(id = character(), ensemble = character(), ensemble_args = character(), children_ids = character())
ensemble_parameter_combinations_ <- tibble::tibble(
id = character(),
ensemble = character(),
ensemble_args = character(),
children_ids = character()
)
# Check that every ensemble dependent is actually included.
missing_forecasters <- setdiff(
ensemble_parameter_combinations_ %>% pull(children_ids) %>% unlist() %>% unique(),
Expand Down Expand Up @@ -272,7 +269,7 @@ rlang::list2(
tar_target(
name = hhs_archive_data_asof,
command = {
get_health_data(as.Date(ref_time_values)) %>%
get_health_data(as.Date(ref_time_values), disease = "covid") %>%
mutate(version = as.Date(ref_time_values)) %>%
relocate(geo_value, time_value, version, hhs)
},
Expand Down Expand Up @@ -348,6 +345,9 @@ rlang::list2(
# weekly data is indexed from the start of the week
mutate(time_value = time_value + 6 - time_value_adjust) %>%
mutate(version = time_value) %>%
# Always convert to data.frame after dplyr operations on data.table.
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
nssp_archive
}
Expand Down Expand Up @@ -380,39 +380,52 @@ rlang::list2(
geo_type = "hhs",
geo_values = "*"
)
google_symptoms_archive_min <-
google_symptoms_state_archive %>%
google_symptoms_archive_min <- google_symptoms_state_archive %>%
bind_rows(google_symptoms_hhs_archive) %>%
select(geo_value, time_value, value) %>%
daily_to_weekly() %>%
mutate(version = time_value) %>%
as_epi_archive(compactify = TRUE)
google_symptoms_archive_min$DT %>%
filter(!is.na(value)) %>%
relocate(geo_value, time_value, version, value) %>%
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
})
all_of_them[[1]]$DT %<>% rename(google_symptoms_4_bronchitis = value)
all_of_them[[2]]$DT %<>% rename(google_symptoms_5_ageusia = value)
all_of_them[[1]] <- all_of_them[[1]]$DT %>%
rename(google_symptoms_4_bronchitis = value) %>%
# Always convert to data.frame after dplyr operations on data.table.
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
all_of_them[[2]] <- all_of_them[[2]]$DT %>%
rename(google_symptoms_5_ageusia = value) %>%
# Always convert to data.frame after dplyr operations on data.table.
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
google_symptoms_archive <- epix_merge(all_of_them[[1]], all_of_them[[2]])
google_symptoms_archive <- google_symptoms_archive$DT %>%
mutate(google_symptoms = google_symptoms_4_bronchitis + google_symptoms_5_ageusia) %>%
# Always convert to data.frame after dplyr operations on data.table.
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
# not just using dplyr to allow for na.rm
google_symptoms_archive$DT$google_symptoms <-
rowSums(google_symptoms_archive$DT[, c("google_symptoms_4_bronchitis", "google_symptoms_5_ageusia")],
na.rm = TRUE
)
pre_pipeline <- google_symptoms_archive %>%
epix_as_of(as.Date("2023-10-04")) %>%
mutate(source = "none")
colnames <- c("google_symptoms_4_bronchitis", "google_symptoms_5_ageusia", "google_symptoms")
colnames <- c("google_symptoms_4_bronchitis", "google_symptoms_5_ageusia")
for (colname in colnames) {
learned_params <- calculate_whitening_params(pre_pipeline, colname = colname)
google_symptoms_archive$DT %<>% data_whitening(colname = colname, learned_params, join_cols = "geo_value")
}
google_symptoms_archive$DT %>%
mutate(
google_symptoms = ifelse(is.na(google_symptoms_4_bronchitis), 0, google_symptoms_4_bronchitis) +
ifelse(is.na(google_symptoms_5_ageusia), 0, google_symptoms_5_ageusia)
) %>%
select(-starts_with("source")) %>%
# Always convert to data.frame after dplyr operations on data.table
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
}
),
Expand Down Expand Up @@ -479,8 +492,14 @@ rlang::list2(
nwss <- readr::read_csv(most_recent) %>%
rename(value = state_med_conc) %>%
arrange(geo_value, time_value)
state_code <- readr::read_csv(here::here("aux_data", "flusion_data", "state_codes_table.csv"), show_col_types = FALSE)
hhs_codes <- readr::read_csv(here::here("aux_data", "flusion_data", "state_code_hhs_table.csv"), show_col_types = FALSE)
state_code <- readr::read_csv(
here::here("aux_data", "flusion_data", "state_codes_table.csv"),
show_col_types = FALSE
)
hhs_codes <- readr::read_csv(
here::here("aux_data", "flusion_data", "state_code_hhs_table.csv"),
show_col_types = FALSE
)
state_to_hhs <- hhs_codes %>%
left_join(state_code, by = "state_code") %>%
select(hhs_region = hhs, geo_value = state_id)
Expand All @@ -489,8 +508,7 @@ rlang::list2(
drop_na() %>%
select(-agg_level, -year, -agg_level, -population, -density)
pop_data <- gen_pop_and_density_data()
nwss_hhs_region <-
nwss %>%
nwss_hhs_region <- nwss %>%
left_join(state_to_hhs, by = "geo_value") %>%
mutate(year = year(time_value)) %>%
left_join(pop_data, by = join_by(geo_value, year)) %>%
Expand All @@ -517,8 +535,12 @@ rlang::list2(
tar_target(
name = hhs_region,
command = {
hhs_region <- readr::read_csv("https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/refs/heads/main/_delphi_utils_python/delphi_utils/data/2020/state_code_hhs_table.csv")
state_id <- readr::read_csv("https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/refs/heads/main/_delphi_utils_python/delphi_utils/data/2020/state_codes_table.csv")
hhs_region <- readr::read_csv(
"https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/refs/heads/main/_delphi_utils_python/delphi_utils/data/2020/state_code_hhs_table.csv"
)
state_id <- readr::read_csv(
"https://raw.githubusercontent.com/cmu-delphi/covidcast-indicators/refs/heads/main/_delphi_utils_python/delphi_utils/data/2020/state_codes_table.csv"
)
hhs_region %>%
left_join(state_id, by = "state_code") %>%
select(hhs_region = hhs, geo_value = state_id) %>%
Expand All @@ -534,22 +556,22 @@ rlang::list2(
rename("hhs" := value) %>%
add_hhs_region_sum(hhs_region) %>%
filter(geo_value != "us") %>%
as_epi_archive(
compactify = TRUE
)
# Always convert to data.frame after dplyr operations on data.table
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
joined_archive_data$geo_type <- "custom"
# drop aggregated geo_values
joined_archive_data <- joined_archive_data %>%
epix_merge(nwss_coarse, sync = "locf")
joined_archive_data$geo_type <- "custom"
# TODO: Maybe bring these back
# epix_merge(doctor_visits_weekly_archive, sync = "locf") %>%
joined_archive_data %<>%
epix_merge(nssp_archive, sync = "locf")
joined_archive_data <- joined_archive_data %>% epix_merge(nwss_coarse, sync = "locf")
joined_archive_data %<>% epix_merge(nssp_archive, sync = "locf")
joined_archive_data$geo_type <- "custom"
joined_archive_data %<>%
epix_merge(google_symptoms_archive, sync = "locf")
joined_archive_data$DT %<>% filter(grepl("[a-z]{2}", geo_value), !(geo_value %in% c("as", "pr", "vi", "gu", "mp")))
joined_archive_data %<>% epix_merge(google_symptoms_archive, sync = "locf")
joined_archive_data <- joined_archive_data$DT %>%
filter(grepl("[a-z]{2}", geo_value), !(geo_value %in% c("as", "pr", "vi", "gu", "mp"))) %>%
# Always convert to data.frame after dplyr operations on data.table
# https://github.com/cmu-delphi/epiprocess/issues/618
as.data.frame() %>%
as_epi_archive(compactify = TRUE)
joined_archive_data$geo_type <- "state"
slide_forecaster(
epi_archive = joined_archive_data,
Expand Down Expand Up @@ -591,7 +613,7 @@ rlang::list2(
rename(model = forecaster) %>%
rename(prediction = value) %>%
filter(!is.na(geo_value))
evaluate_predictions(predictions_cards = filtered_forecasts, truth_data = actual_eval_data) %>%
evaluate_predictions(forecasts = filtered_forecasts, truth_data = actual_eval_data) %>%
rename(forecaster = model)
}
),
Expand Down
Loading
Loading