Skip to content

codeaudit/spectral-universality

 
 

Repository files navigation

Harmonics of Learning

Rotational harmonics

Description

Implementation of a complex-valued Power-Spectral Network trained via contrastive learning on an invariance objective for a finite group. As shown in the companion paper, at convergence the network learns all the irreducible unitary representations of the group. In particular, the multiplication table can be extracted from its weights.

We provide implementations of the model and its training in both PyTorch and JAX.

Setup

python 3.8+
pip install -r requirements.txt

Groups

The file groups.py provides implementations of various finite groups, including cyclic, dihedral and symmetric.

Training

In order to train the models in PyTorch and in JAX, run the files train_torch.py and train_JAX.py respectively. The training parameters are set at the beginning of these files.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%