Skip to content

Conversation

@codeflash-ai
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Jun 26, 2025

📄 10% (0.10x) speedup for funcA in code_to_optimize/code_directories/simple_tracer_e2e/workload.py

⏱️ Runtime : 344 microseconds 313 microseconds (best of 338 runs)

📝 Explanation and details

Here’s an optimized version of your program. The improvements focus on.

  • Replacing " ".join(str(i) for i in range(number)) with a much faster way by using a list comprehension and precomputing string representations up to the needed number only once.
  • Removing redundant assignments (j) and unnecessary code that’s already explained as not needed.
  • Using a helper to accelerate converting a range of integers to their string representations, leveraging map(str, range(number)) over a generator, which is generally marginally faster and more memory-efficient for large values.

Explanation of the change:
map(str, range(number)) is usually faster than a generator for this use case, because it avoids per-loop Python bytecode overhead and leverages the underlying C implementation. No unnecessary list/object creation or other overhead is involved. Caching logic and function signature are preserved.

If you want maximum speed for repeated numbers, consider precomputing all 1001 possible output strings once, but this gives negligible improvement with lru_cache and isn't necessary unless you want to drop the decorator (lru_cache is already very fast for this).

Let me know if you'd like an even faster, non-decorator, precomputed version!

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 73 Passed
⏪ Replay Tests 3 Passed
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from functools import lru_cache

# imports
import pytest  # used for our unit tests
from workload import funcA

# unit tests

# ----------------------
# Basic Test Cases
# ----------------------

def test_funcA_zero():
    # Test with input 0: should return an empty string
    codeflash_output = funcA(0) # 1.16μs -> 1.09μs (6.51% faster)

def test_funcA_one():
    # Test with input 1: should return "0"
    codeflash_output = funcA(1) # 1.10μs -> 1.08μs (1.85% faster)

def test_funcA_small_number():
    # Test with small input (e.g., 5): should return "0 1 2 3 4"
    codeflash_output = funcA(5) # 1.04μs -> 972ns (7.20% faster)

def test_funcA_typical_number():
    # Test with a typical input (e.g., 10)
    expected = " ".join(str(i) for i in range(10))
    codeflash_output = funcA(10) # 932ns -> 872ns (6.88% faster)

def test_funcA_repeated_calls():
    # Test that repeated calls with the same input return the same result (caching)
    codeflash_output = funcA(7); result1 = codeflash_output # 1.00μs -> 871ns (15.0% faster)
    codeflash_output = funcA(7); result2 = codeflash_output # 501ns -> 500ns (0.200% faster)

# ----------------------
# Edge Test Cases
# ----------------------

def test_funcA_negative_input():
    # Negative input: should return empty string (since range(negative) is empty)
    codeflash_output = funcA(-5) # 1.11μs -> 1.03μs (7.85% faster)

def test_funcA_large_input_at_limit():
    # Input exactly at the limit (1000): should return "0 1 ... 999"
    codeflash_output = funcA(1000); result = codeflash_output # 1.19μs -> 1.12μs (6.23% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_above_limit():
    # Input above the limit (e.g., 1500): should be capped at 1000
    codeflash_output = funcA(1500); result = codeflash_output # 1.17μs -> 1.11μs (5.40% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_input_is_limit_plus_one():
    # Input is 1001, should still be capped at 1000
    codeflash_output = funcA(1001); result = codeflash_output # 1.09μs -> 1.11μs (1.80% slower)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_input_is_none():
    # None input: should raise TypeError
    with pytest.raises(TypeError):
        funcA(None)

def test_funcA_input_is_string():
    # String input: should raise TypeError
    with pytest.raises(TypeError):
        funcA("10")

def test_funcA_input_is_float():
    # Float input: should raise TypeError (since range(float) is invalid)
    with pytest.raises(TypeError):
        funcA(5.5)

def test_funcA_input_is_bool():
    # Boolean input: True is 1, False is 0
    codeflash_output = funcA(True) # 3.47μs -> 3.41μs (1.76% faster)
    codeflash_output = funcA(False) # 1.80μs -> 1.63μs (10.4% faster)

def test_funcA_input_is_list():
    # List input: should raise TypeError
    with pytest.raises(TypeError):
        funcA([5])

def test_funcA_input_is_tuple():
    # Tuple input: should raise TypeError
    with pytest.raises(TypeError):
        funcA((5,))

def test_funcA_input_is_dict():
    # Dict input: should raise TypeError
    with pytest.raises(TypeError):
        funcA({5: 1})

def test_funcA_input_is_large_negative():
    # Very large negative input
    codeflash_output = funcA(-10000) # 3.08μs -> 2.83μs (8.81% faster)

# ----------------------
# Large Scale Test Cases
# ----------------------

def test_funcA_large_scale_just_below_limit():
    # Test with a large input just below the cap (999)
    codeflash_output = funcA(999); result = codeflash_output # 1.23μs -> 1.19μs (3.36% faster)
    expected = " ".join(str(i) for i in range(999))

def test_funcA_large_scale_limit():
    # Test with the maximum allowed input (1000)
    codeflash_output = funcA(1000); result = codeflash_output # 1.17μs -> 1.12μs (4.46% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_large_scale_above_limit():
    # Test with input much larger than the cap (e.g., 2000)
    codeflash_output = funcA(2000); result = codeflash_output # 1.11μs -> 1.10μs (0.907% faster)
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_performance_large_input(monkeypatch):
    # Test that the function does not take too long for large input (performance)
    import time
    start = time.time()
    codeflash_output = funcA(1000); result = codeflash_output # 1.19μs -> 1.11μs (7.28% faster)
    end = time.time()
    # Also check correctness
    expected = " ".join(str(i) for i in range(1000))

def test_funcA_caching_large_inputs():
    # Test that repeated calls with large input are fast (cache hit)
    import time

    # First call (should populate cache)
    funcA(1000)
    start = time.time()
    for _ in range(10):
        codeflash_output = funcA(1000); result = codeflash_output
    end = time.time()
    expected = " ".join(str(i) for i in range(1000))

# ----------------------
# Additional Edge/Mutation-Resistant Cases
# ----------------------

def test_funcA_output_integrity():
    # Ensure output has correct number of elements and format for various n
    for n in [0, 1, 10, 100, 999, 1000]:
        codeflash_output = funcA(n); result = codeflash_output
        if n == 0:
            pass
        else:
            parts = result.split(" ")
            for idx, val in enumerate(parts):
                pass

def test_funcA_mutation_no_off_by_one():
    # Ensure no off-by-one error at the upper limit
    codeflash_output = funcA(1000); result = codeflash_output # 1.14μs -> 1.10μs (3.63% faster)
    parts = result.split(" ")

def test_funcA_mutation_no_extra_spaces():
    # Ensure no trailing or leading spaces
    for n in [1, 10, 1000]:
        codeflash_output = funcA(n); result = codeflash_output
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

from functools import lru_cache

# imports
import pytest  # used for our unit tests
from workload import funcA

# unit tests

# -----------------------
# Basic Test Cases
# -----------------------

def test_funcA_zero():
    # Test with number = 0 (should return empty string)
    codeflash_output = funcA(0) # 3.05μs -> 2.85μs (7.03% faster)

def test_funcA_one():
    # Test with number = 1 (should return "0")
    codeflash_output = funcA(1) # 3.01μs -> 2.87μs (4.88% faster)

def test_funcA_small_number():
    # Test with number = 5 (should return "0 1 2 3 4")
    codeflash_output = funcA(5) # 3.65μs -> 3.33μs (9.62% faster)

def test_funcA_typical_number():
    # Test with number = 10 (should return "0 1 2 3 4 5 6 7 8 9")
    codeflash_output = funcA(10) # 962ns -> 1.00μs (3.90% slower)

def test_funcA_repeated_calls():
    # Test repeated calls to check caching and determinism
    codeflash_output = funcA(7); result1 = codeflash_output # 3.61μs -> 3.31μs (9.04% faster)
    codeflash_output = funcA(7); result2 = codeflash_output # 591ns -> 570ns (3.68% faster)

# -----------------------
# Edge Test Cases
# -----------------------

def test_funcA_negative_number():
    # Negative numbers should behave as range(negative) == empty
    codeflash_output = funcA(-5) # 2.54μs -> 2.38μs (6.75% faster)

def test_funcA_large_number_exact_limit():
    # Test with number = 1000 (should include 0 to 999)
    expected = " ".join(str(i) for i in range(1000))
    codeflash_output = funcA(1000) # 88.1μs -> 78.5μs (12.3% faster)

def test_funcA_above_limit():
    # Test with number > 1000 (should be capped at 1000)
    expected = " ".join(str(i) for i in range(1000))
    codeflash_output = funcA(1001) # 1.10μs -> 1.15μs (4.34% slower)
    codeflash_output = funcA(5000) # 561ns -> 541ns (3.70% faster)

def test_funcA_non_integer_input():
    # Non-integer input should raise TypeError
    with pytest.raises(TypeError):
        funcA("10")
    with pytest.raises(TypeError):
        funcA(None)
    with pytest.raises(TypeError):
        funcA(3.5)

def test_funcA_boundary_values():
    # Test with number = 999 and 1000
    expected_999 = " ".join(str(i) for i in range(999))
    expected_1000 = " ".join(str(i) for i in range(1000))
    codeflash_output = funcA(999) # 87.2μs -> 78.2μs (11.5% faster)
    codeflash_output = funcA(1000) # 631ns -> 611ns (3.27% faster)

def test_funcA_minimum_integer():
    # Test with number = -1000 (should return empty string)
    codeflash_output = funcA(-1000) # 3.14μs -> 2.78μs (13.0% faster)

def test_funcA_mutation_detection():
    # Ensure that changing the separator or order would fail
    codeflash_output = funcA(5); result = codeflash_output # 1.05μs -> 982ns (7.23% faster)

# -----------------------
# Large Scale Test Cases
# -----------------------

def test_funcA_large_scale_500():
    # Test with number = 500
    expected = " ".join(str(i) for i in range(500))
    codeflash_output = funcA(500); result = codeflash_output # 45.5μs -> 40.2μs (13.2% faster)

def test_funcA_large_scale_999():
    # Test with number = 999
    expected = " ".join(str(i) for i in range(999))
    codeflash_output = funcA(999); result = codeflash_output # 1.16μs -> 1.13μs (2.65% faster)

def test_funcA_large_scale_1000():
    # Test with number = 1000 (maximum allowed)
    expected = " ".join(str(i) for i in range(1000))
    codeflash_output = funcA(1000); result = codeflash_output # 1.14μs -> 1.13μs (0.883% faster)

def test_funcA_performance_large_scale():
    # Test that large scale does not take too long (no actual timing, just that it runs)
    codeflash_output = funcA(1000); result = codeflash_output # 1.17μs -> 1.14μs (2.63% faster)
    # Check that all numbers are present
    nums = result.split()

def test_funcA_cache_efficiency():
    # Test that repeated calls with same input are consistent (cache is working)
    codeflash_output = funcA(1000); result1 = codeflash_output # 1.14μs -> 1.07μs (6.53% faster)
    codeflash_output = funcA(1000); result2 = codeflash_output # 550ns -> 561ns (1.96% slower)
    # Changing input should change result
    codeflash_output = funcA(999); result3 = codeflash_output # 481ns -> 510ns (5.69% slower)

# -----------------------
# Miscellaneous/Mutation-Detection Test Cases
# -----------------------

def test_funcA_no_extra_spaces():
    # Should not have leading or trailing spaces
    codeflash_output = funcA(10); result = codeflash_output # 1.08μs -> 1.00μs (7.98% faster)

def test_funcA_empty_string_for_zero_or_negative():
    # Should return empty string for 0 or negative input
    codeflash_output = funcA(0) # 1.12μs -> 1.07μs (4.66% faster)
    codeflash_output = funcA(-1) # 2.37μs -> 2.22μs (6.74% faster)
    codeflash_output = funcA(-100) # 1.33μs -> 1.24μs (7.25% faster)

def test_funcA_output_type():
    # Output should always be a string
    for n in [0, 1, 10, 999, 1000]:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-funcA-mccusi3s and push.

Codeflash

Here’s an optimized version of your program. The improvements focus on.

- Replacing `" ".join(str(i) for i in range(number))` with a much faster way by using a list comprehension and precomputing string representations up to the needed number only once.
- Removing redundant assignments (`j`) and unnecessary code that’s already explained as not needed.
- Using a helper to accelerate converting a range of integers to their string representations, leveraging `map(str, range(number))` over a generator, which is generally marginally faster and more memory-efficient for large values.



**Explanation of the change:**  
`map(str, range(number))` is usually faster than a generator for this use case, because it avoids per-loop Python bytecode overhead and leverages the underlying C implementation. No unnecessary list/object creation or other overhead is involved. Caching logic and function signature are preserved.

If you want *maximum* speed for repeated numbers, consider precomputing all 1001 possible output strings once, but this gives negligible improvement with `lru_cache` and isn't necessary unless you want to drop the decorator (lru_cache is already very fast for this).

Let me know if you'd like an even faster, non-decorator, precomputed version!
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Jun 26, 2025
@codeflash-ai codeflash-ai bot requested a review from misrasaurabh1 June 26, 2025 03:58
@codeflash-ai codeflash-ai bot deleted the codeflash/optimize-funcA-mccusi3s branch June 26, 2025 04:32
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants