Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 20, 2025

📄 48% (0.48x) speedup for ToolCall.from_list in src/cohere/manually_maintained/cohere_aws/chat.py

⏱️ Runtime : 2.30 milliseconds 1.56 milliseconds (best of 164 runs)

📝 Explanation and details

The optimized code achieves a 47% speedup through three key micro-optimizations that reduce Python's lookup overhead:

1. Localized method lookups in tight loops

  • from_dict: Assigns tool_call_res.get to local variable get, eliminating repeated attribute lookups (9.8% faster per call)
  • from_list: Assigns cls.from_dict to local variable from_dict, avoiding repeated method resolution during iteration

2. Preallocated list construction

  • Replaces dynamic list comprehension with preallocated [None] * len(tool_calls_res) and explicit loop assignment
  • Eliminates repeated memory reallocations as the list grows, providing substantial gains for larger datasets

3. Conditional super() call

  • Only calls super().__init__(**kwargs) when kwargs is non-empty, avoiding unnecessary base class initialization overhead

The optimizations are particularly effective for large-scale scenarios - test cases with 1000+ elements show ~49% speedup, while smaller datasets (1-2 elements) see 8-13% improvements. The approach maintains identical behavior and handles all edge cases (None inputs, missing keys, empty lists) correctly, with only empty list cases showing slight regression due to loop setup overhead outweighing benefits at zero scale.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 4804 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 100.0%
🌀 Generated Regression Tests and Runtime
from typing import Any, Dict, List, Optional

# imports
import pytest
from cohere.manually_maintained.cohere_aws.chat import ToolCall

# unit tests

# =========================
# 1. BASIC TEST CASES
# =========================

def test_from_list_single_valid_dict():
    # Test with a single valid tool call dictionary
    data = [{"name": "foo", "parameters": {"x": 1}, "generation_id": "abc"}]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 4.32μs -> 3.81μs (13.4% faster)
    tc = result[0]

def test_from_list_multiple_valid_dicts():
    # Test with multiple valid tool call dictionaries
    data = [
        {"name": "foo", "parameters": {"x": 1}, "generation_id": "abc"},
        {"name": "bar", "parameters": {"y": 2}, "generation_id": "def"},
    ]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 4.28μs -> 3.89μs (10.1% faster)

def test_from_list_empty_list():
    # Test with an empty list (should return an empty list)
    data = []
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 974ns -> 1.24μs (21.6% slower)

# =========================
# 2. EDGE TEST CASES
# =========================

def test_from_list_none_input():
    # Test with None as input (should return None)
    codeflash_output = ToolCall.from_list(None); result = codeflash_output # 407ns -> 381ns (6.82% faster)

def test_from_list_non_list_input():
    # Test with a non-list input (should return None)
    codeflash_output = ToolCall.from_list("not a list") # 545ns -> 503ns (8.35% faster)
    codeflash_output = ToolCall.from_list(123) # 338ns -> 331ns (2.11% faster)
    codeflash_output = ToolCall.from_list({"name": "foo"}) # 281ns -> 245ns (14.7% faster)

def test_from_list_dicts_with_missing_keys():
    # Test with dicts missing one or more expected keys
    data = [
        {"name": "foo", "parameters": {"x": 1}},  # missing generation_id
        {"parameters": {"y": 2}, "generation_id": "def"},  # missing name
        {"name": "baz", "generation_id": "ghi"},  # missing parameters
    ]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 5.33μs -> 4.93μs (8.03% faster)

def test_from_list_dicts_with_extra_keys():
    # Test with dicts containing extra keys (should ignore extras)
    data = [
        {"name": "foo", "parameters": {"x": 1}, "generation_id": "abc", "extra": 42},
        {"name": "bar", "parameters": {"y": 2}, "generation_id": "def", "unused": "zzz"},
    ]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 4.01μs -> 3.77μs (6.34% faster)

def test_from_list_dicts_with_non_dict_elements():
    # Test with a list containing non-dict elements (should raise AttributeError)
    data = [
        {"name": "foo", "parameters": {"x": 1}, "generation_id": "abc"},
        "not a dict",
        123,
        None,
    ]
    with pytest.raises(AttributeError):
        ToolCall.from_list(data) # 4.59μs -> 4.10μs (12.0% faster)

def test_from_list_mutable_parameters():
    # Test that the parameters dict is not shared between ToolCall objects
    data = [
        {"name": "foo", "parameters": {"x": 1}, "generation_id": "abc"},
        {"name": "bar", "parameters": {"y": 2}, "generation_id": "def"},
    ]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 4.14μs -> 3.69μs (12.2% faster)
    result[0].parameters["z"] = 100

# =========================
# 3. LARGE SCALE TEST CASES
# =========================

def test_from_list_large_input():
    # Test with a large list of valid tool call dicts (1000 elements)
    large_data = [
        {"name": f"name{i}", "parameters": {"val": i}, "generation_id": f"id{i}"}
        for i in range(1000)
    ]
    codeflash_output = ToolCall.from_list(large_data); result = codeflash_output # 564μs -> 376μs (49.9% faster)
    # Spot check a few elements
    for idx in [0, 499, 999]:
        tc = result[idx]

def test_from_list_large_with_some_missing_keys():
    # Test with a large list where some dicts are missing keys
    large_data = [
        {"name": f"name{i}", "parameters": {"val": i}, "generation_id": f"id{i}"}
        if i % 10 != 0 else
        {"name": f"name{i}"}  # missing parameters and generation_id
        for i in range(1000)
    ]
    codeflash_output = ToolCall.from_list(large_data); result = codeflash_output # 561μs -> 376μs (49.1% faster)
    for i, tc in enumerate(result):
        if i % 10 == 0:
            pass
        else:
            pass

def test_from_list_large_all_empty_dicts():
    # Test with a large list of empty dicts
    data = [{} for _ in range(1000)]
    codeflash_output = ToolCall.from_list(data); result = codeflash_output # 556μs -> 375μs (48.4% faster)
    for tc in result:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from typing import Any, Dict, List, Optional

# imports
import pytest  # used for our unit tests
from cohere.manually_maintained.cohere_aws.chat import ToolCall

# unit tests

# ----------- BASIC TEST CASES ------------

def test_from_list_basic_single_toolcall():
    # Single valid tool call dict
    input_list = [{
        "name": "search",
        "parameters": {"query": "pytest"},
        "generation_id": "gen1"
    }]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 4.20μs -> 3.85μs (8.87% faster)
    tc = result[0]

def test_from_list_basic_multiple_toolcalls():
    # Multiple valid tool call dicts
    input_list = [
        {"name": "search", "parameters": {"query": "foo"}, "generation_id": "g1"},
        {"name": "summarize", "parameters": {"text": "bar"}, "generation_id": "g2"}
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 4.27μs -> 3.90μs (9.40% faster)

def test_from_list_basic_empty_list():
    # Empty input list should return empty list
    input_list = []
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 904ns -> 1.24μs (27.1% slower)

# ----------- EDGE TEST CASES ------------

def test_from_list_none_input():
    # None input should return None
    codeflash_output = ToolCall.from_list(None); result = codeflash_output # 428ns -> 378ns (13.2% faster)

def test_from_list_non_list_input():
    # Non-list input should return None
    for invalid in ["string", 123, {"name": "search"}, 3.14, True]:
        codeflash_output = ToolCall.from_list(invalid); result = codeflash_output # 1.68μs -> 1.50μs (11.4% faster)


def test_from_list_dicts_missing_keys():
    # Dicts missing some keys should result in ToolCall objects with None for those keys
    input_list = [
        {"name": "search"},
        {"parameters": {"foo": "bar"}},
        {"generation_id": "g3"},
        {}
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 6.83μs -> 5.85μs (16.8% faster)

def test_from_list_mixed_valid_and_invalid_dicts():
    # List with both valid and invalid dicts
    input_list = [
        {"name": "search", "parameters": {"query": "foo"}, "generation_id": "g1"},
        {},
        {"parameters": {"bar": "baz"}},
        "not_a_dict",
        None,
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output

def test_from_list_dict_with_extra_keys():
    # Dicts with extra keys should still work, extra keys ignored
    input_list = [
        {"name": "search", "parameters": {}, "generation_id": "g1", "extra": "value"}
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 4.19μs -> 3.86μs (8.61% faster)
    tc = result[0]

def test_from_list_parameters_is_none_or_not_dict():
    # parameters can be None or not a dict, should be set as-is
    input_list = [
        {"name": "search", "parameters": None, "generation_id": "g1"},
        {"name": "search", "parameters": "not_a_dict", "generation_id": "g2"},
        {"name": "search", "parameters": 123, "generation_id": "g3"},
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 4.96μs -> 4.37μs (13.4% faster)

# ----------- LARGE SCALE TEST CASES ------------

def test_from_list_large_list_of_valid_dicts():
    # Large list of valid dicts
    input_list = [
        {"name": f"name_{i}", "parameters": {"param": i}, "generation_id": f"gen_{i}"}
        for i in range(1000)
    ]
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output # 560μs -> 377μs (48.6% faster)
    # Spot check a few elements
    for idx in [0, 499, 999]:
        tc = result[idx]

def test_from_list_large_list_mixed_types():
    # Large list with mix of valid dicts, invalid dicts, and non-dict elements
    input_list = []
    for i in range(500):
        input_list.append({"name": f"name_{i}", "parameters": {"param": i}, "generation_id": f"gen_{i}"})
    for i in range(250):
        input_list.append({})
    for i in range(250):
        input_list.append(None)
    codeflash_output = ToolCall.from_list(input_list); result = codeflash_output
    # Check first 500 are valid
    for idx in range(500):
        tc = result[idx]
    # Next 250 are empty dicts
    for idx in range(500, 750):
        tc = result[idx]
    # Last 250 are None
    for idx in range(750, 1000):
        tc = result[idx]


#------------------------------------------------
from cohere.manually_maintained.cohere_aws.chat import ToolCall

def test_ToolCall_from_list():
    ToolCall.from_list(ToolCall, [])

def test_ToolCall_from_list_2():
    ToolCall.from_list(ToolCall, None)

To edit these changes git checkout codeflash/optimize-ToolCall.from_list-mgzp1gqy and push.

Codeflash

The optimized code achieves a **47% speedup** through three key micro-optimizations that reduce Python's lookup overhead:

**1. Localized method lookups in tight loops**
- `from_dict`: Assigns `tool_call_res.get` to local variable `get`, eliminating repeated attribute lookups (9.8% faster per call)
- `from_list`: Assigns `cls.from_dict` to local variable `from_dict`, avoiding repeated method resolution during iteration

**2. Preallocated list construction**
- Replaces dynamic list comprehension with preallocated `[None] * len(tool_calls_res)` and explicit loop assignment
- Eliminates repeated memory reallocations as the list grows, providing substantial gains for larger datasets

**3. Conditional super() call**
- Only calls `super().__init__(**kwargs)` when `kwargs` is non-empty, avoiding unnecessary base class initialization overhead

The optimizations are particularly effective for **large-scale scenarios** - test cases with 1000+ elements show ~49% speedup, while smaller datasets (1-2 elements) see 8-13% improvements. The approach maintains identical behavior and handles all edge cases (None inputs, missing keys, empty lists) correctly, with only empty list cases showing slight regression due to loop setup overhead outweighing benefits at zero scale.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 20, 2025 22:15
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Oct 20, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant