Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Oct 30, 2025

📄 14% (0.14x) speedup for accumulate_delta in src/openai/lib/streaming/_assistants.py

⏱️ Runtime : 985 microseconds 867 microseconds (best of 162 runs)

📝 Explanation and details

The optimization achieves a 13% speedup through three key changes:

1. Eliminated Function Call Overhead:
Replaced custom is_dict() and is_list() wrapper functions with direct isinstance() calls. The line profiler shows is_dict() was called 1,809 times, consuming 358µs. Direct isinstance() calls eliminate this overhead since Python's C-implemented isinstance() is highly optimized.

2. Optimized Set Membership Check:
Changed if key == "index" or key == "type": to if key in {"index", "type"}:. Set membership testing is faster than chained equality comparisons, especially when called frequently (4,109 times according to the profiler).

3. Improved List Type Checking:
Replaced all(isinstance(x, (str, int, float)) for x in acc_value) with an explicit loop that breaks early. This avoids potential generator overhead and provides better control flow for the type checking logic.

Performance Impact by Test Case:

  • List operations see the biggest gains (24-66% faster): The elimination of function call overhead in list processing provides substantial benefits for cases like test_accumulate_simple_list_of_scalars and test_accumulate_lists_of_primitives.
  • Nested dictionary operations show 16-39% improvements due to reduced overhead in recursive calls.
  • Simple scalar operations see modest 3-7% gains from the set membership optimization.
  • Large-scale tests demonstrate consistent 2-27% improvements, showing the optimizations scale well.

These optimizations are particularly effective for workloads with frequent list processing and nested dictionary operations, which are common in streaming data accumulation scenarios.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 55 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 4 Passed
📊 Tests Coverage 97.4%
🌀 Generated Regression Tests and Runtime
import pytest
from openai.lib.streaming._assistants import accumulate_delta
# function to test
from typing_extensions import TypeGuard

# unit tests

# --------------------------
# 1. BASIC TEST CASES
# --------------------------

def test_accumulate_new_key():
    # Adding a new key to an empty dict
    acc = {}
    delta = {'a': 1}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 937ns -> 998ns (6.11% slower)

def test_accumulate_existing_int():
    # Accumulating ints
    acc = {'a': 1}
    delta = {'a': 2}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.61μs -> 1.50μs (7.49% faster)

def test_accumulate_existing_float():
    # Accumulating floats
    acc = {'a': 1.5}
    delta = {'a': 2.5}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.40μs -> 1.36μs (3.24% faster)

def test_accumulate_existing_str():
    # Accumulating strings (concatenation)
    acc = {'a': 'foo'}
    delta = {'a': 'bar'}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.23μs -> 1.16μs (6.23% faster)

def test_accumulate_none_value():
    # If acc value is None, it should be replaced by delta value
    acc = {'a': None}
    delta = {'a': 5}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 777ns -> 777ns (0.000% faster)

def test_accumulate_nested_dict():
    # Nested dicts should be accumulated recursively
    acc = {'a': {'b': 1}}
    delta = {'a': {'b': 2, 'c': 3}}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 2.61μs -> 2.20μs (19.0% faster)

def test_accumulate_simple_list_of_scalars():
    # Simple lists of scalars should be extended
    acc = {'a': [1, 2]}
    delta = {'a': [3, 4]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 3.17μs -> 1.95μs (62.5% faster)

def test_accumulate_new_list_key():
    # New list key added
    acc = {}
    delta = {'a': [1, 2]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 797ns -> 779ns (2.31% faster)

def test_accumulate_type_and_index_keys():
    # "type" and "index" keys should be replaced, not accumulated
    acc = {'type': 'foo', 'index': 1}
    delta = {'type': 'bar', 'index': 2}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.15μs -> 1.07μs (7.10% faster)

# --------------------------
# 2. EDGE TEST CASES
# --------------------------

def test_accumulate_empty_delta():
    # Delta is empty, acc should remain unchanged
    acc = {'a': 1}
    delta = {}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 585ns -> 594ns (1.52% slower)

def test_accumulate_empty_acc():
    # Acc is empty, delta should be copied in
    acc = {}
    delta = {'a': 1}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 783ns -> 753ns (3.98% faster)

def test_accumulate_empty_both():
    # Both acc and delta are empty
    acc = {}
    delta = {}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 592ns -> 569ns (4.04% faster)

def test_accumulate_list_of_dicts_insert():
    # Insert a new dict into a list of dicts at a new index
    acc = {'a': [{'foo': 'bar', 'index': 0}]}
    delta = {'a': [{'foo': 'baz', 'index': 1}]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 4.23μs -> 2.65μs (59.2% faster)

def test_accumulate_list_of_dicts_update():
    # Update a dict in a list of dicts at an existing index
    acc = {'a': [{'foo': 'bar', 'index': 0}, {'foo': 'baz', 'index': 1}]}
    delta = {'a': [{'foo': 'qux', 'index': 1}]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 4.20μs -> 3.05μs (37.7% faster)

def test_accumulate_list_of_dicts_missing_index_key():
    # Should raise RuntimeError if delta entry in list of dicts lacks "index"
    acc = {'a': [{'foo': 'bar', 'index': 0}]}
    delta = {'a': [{'foo': 'baz'}]}
    with pytest.raises(RuntimeError):
        accumulate_delta(acc, delta) # 5.55μs -> 4.42μs (25.5% faster)

def test_accumulate_list_of_dicts_non_int_index():
    # Should raise TypeError if "index" is not int
    acc = {'a': [{'foo': 'bar', 'index': 0}]}
    delta = {'a': [{'foo': 'baz', 'index': 'one'}]}
    with pytest.raises(TypeError):
        accumulate_delta(acc, delta) # 3.39μs -> 2.42μs (39.8% faster)

def test_accumulate_list_of_dicts_non_dict_entry():
    # Should raise TypeError if delta entry in list is not a dict
    acc = {'a': [{'foo': 'bar', 'index': 0}]}
    delta = {'a': ['notadict']}
    with pytest.raises(TypeError):
        accumulate_delta(acc, delta) # 3.22μs -> 2.22μs (45.1% faster)


def test_accumulate_list_with_gap_in_index():
    # Insert at index beyond current length, should insert at index
    acc = {'a': [{'foo': 'bar', 'index': 0}]}
    delta = {'a': [{'foo': 'baz', 'index': 2}]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 4.53μs -> 2.93μs (54.9% faster)

def test_accumulate_with_float_and_int():
    # Mixing int and float should sum correctly
    acc = {'a': 1}
    delta = {'a': 2.5}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.69μs -> 1.64μs (3.18% faster)

def test_accumulate_with_str_and_non_str():
    # If types don't match, should replace
    acc = {'a': 'foo'}
    delta = {'a': 123}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.87μs -> 1.43μs (30.6% faster)

def test_accumulate_with_dict_and_non_dict():
    # If types don't match, should replace
    acc = {'a': {'b': 1}}
    delta = {'a': 2}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.75μs -> 1.38μs (27.0% faster)

def test_accumulate_with_list_and_non_list():
    # If types don't match, should replace
    acc = {'a': [1, 2]}
    delta = {'a': 'foo'}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.66μs -> 1.29μs (28.4% faster)

def test_accumulate_with_none_delta():
    # If delta value is None, should replace acc value
    acc = {'a': 1}
    delta = {'a': None}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 1.72μs -> 1.44μs (20.1% faster)

def test_accumulate_with_nested_type_index():
    # "index" and "type" keys in nested dicts should be replaced, not accumulated
    acc = {'a': {'type': 'foo', 'index': 1}}
    delta = {'a': {'type': 'bar', 'index': 2}}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 2.15μs -> 1.85μs (16.4% faster)

# --------------------------
# 3. LARGE SCALE TEST CASES
# --------------------------

def test_accumulate_large_flat_dict():
    # Large flat dict of ints
    acc = {str(i): i for i in range(500)}
    delta = {str(i): i for i in range(500)}
    expected = {str(i): i*2 for i in range(500)}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 86.0μs -> 83.5μs (2.97% faster)

def test_accumulate_large_nested_dict():
    # Large nested dict
    acc = {'outer': {str(i): i for i in range(100)}}
    delta = {'outer': {str(i): i for i in range(100)}}
    expected = {'outer': {str(i): i*2 for i in range(100)}}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 19.5μs -> 18.3μs (6.49% faster)

def test_accumulate_large_list_of_scalars():
    # Large list of scalars
    acc = {'a': list(range(500))}
    delta = {'a': list(range(500, 1000))}
    expected = {'a': list(range(1000))}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 28.0μs -> 22.4μs (24.7% faster)

def test_accumulate_large_list_of_dicts():
    # Large list of dicts with index
    acc = {'a': [{'val': i, 'index': i} for i in range(10)]}
    delta = {'a': [{'val': 100 + i, 'index': i} for i in range(10)]}
    # Each dict at index i should have its 'val' accumulated
    expected = {'a': [{'val': i + 100 + i, 'index': i} for i in range(10)]}
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 9.16μs -> 6.98μs (31.3% faster)

def test_accumulate_large_mixed():
    # Large dict with mixed types and nested structures
    acc = {
        'ints': {str(i): i for i in range(100)},
        'floats': {str(i): float(i) for i in range(100)},
        'strings': {str(i): str(i) for i in range(100)},
        'lists': [i for i in range(100)],
        'dicts': [{'val': i, 'index': i} for i in range(10)]
    }
    delta = {
        'ints': {str(i): i for i in range(100)},
        'floats': {str(i): float(i) for i in range(100)},
        'strings': {str(i): str(i) for i in range(100, 200)},
        'lists': [i for i in range(100, 200)],
        'dicts': [{'val': 100 + i, 'index': i} for i in range(10)]
    }
    expected = {
        'ints': {str(i): i*2 for i in range(100)},
        'floats': {str(i): float(i)*2 for i in range(100)},
        'strings': {str(i): str(i) for i in range(100)} | {str(i): str(i) for i in range(100, 200)},
        'lists': [i for i in range(200)],
        'dicts': [{'val': i + 100 + i, 'index': i} for i in range(10)]
    }
    codeflash_output = accumulate_delta(acc, delta); result = codeflash_output # 58.5μs -> 53.1μs (10.1% faster)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
from copy import deepcopy

# imports
import pytest  # used for our unit tests
from openai.lib.streaming._assistants import accumulate_delta
# function to test
from typing_extensions import TypeGuard

# unit tests

# --------------------------
# Basic Test Cases
# --------------------------

def test_accumulate_simple_strings():
    # Accumulate two string values
    acc = {'a': 'foo'}
    delta = {'a': 'bar'}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 1.11μs -> 1.14μs (2.73% slower)

def test_accumulate_simple_ints():
    # Accumulate two integer values
    acc = {'x': 1}
    delta = {'x': 2}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 1.38μs -> 1.29μs (6.72% faster)

def test_accumulate_simple_floats():
    # Accumulate two float values
    acc = {'y': 1.5}
    delta = {'y': 2.5}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 1.28μs -> 1.19μs (7.49% faster)

def test_accumulate_new_key():
    # Delta introduces a new key
    acc = {'a': 1}
    delta = {'b': 2}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 622ns -> 591ns (5.25% faster)

def test_accumulate_none_value():
    # acc value is None, should be replaced by delta value
    acc = {'a': None}
    delta = {'a': 'foo'}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 728ns -> 694ns (4.90% faster)

def test_accumulate_index_and_type_keys():
    # index and type keys should be replaced, not accumulated
    acc = {'index': 0, 'type': 'old'}
    delta = {'index': 1, 'type': 'new'}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 970ns -> 960ns (1.04% faster)

def test_accumulate_dicts():
    # Nested dictionaries should be accumulated recursively
    acc = {'d': {'x': 1}}
    delta = {'d': {'x': 2, 'y': 3}}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 2.48μs -> 1.99μs (24.5% faster)

def test_accumulate_lists_of_primitives():
    # Lists of primitives should be extended
    acc = {'lst': [1, 2]}
    delta = {'lst': [3, 4]}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 3.10μs -> 1.87μs (65.6% faster)

def test_accumulate_lists_of_strings():
    acc = {'lst': ['a', 'b']}
    delta = {'lst': ['c', 'd']}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 2.39μs -> 1.61μs (48.6% faster)

# --------------------------
# Edge Test Cases
# --------------------------

def test_accumulate_empty_acc_and_delta():
    # Both acc and delta are empty
    acc = {}
    delta = {}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 455ns -> 427ns (6.56% faster)

def test_accumulate_empty_delta():
    # Delta is empty, acc should remain unchanged
    acc = {'a': 1, 'b': 2}
    delta = {}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 475ns -> 461ns (3.04% faster)

def test_accumulate_empty_acc():
    # Acc is empty, should copy delta
    acc = {}
    delta = {'a': 1, 'b': 2}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 820ns -> 753ns (8.90% faster)

def test_accumulate_list_of_dicts_insert():
    # List of dicts, delta with new index
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': [{'foo': 'baz', 'index': 1}]}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 4.06μs -> 2.59μs (56.7% faster)

def test_accumulate_list_of_dicts_update():
    # List of dicts, delta updates existing index
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': [{'foo': 'baz', 'index': 0}]}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 3.86μs -> 2.76μs (39.5% faster)

def test_accumulate_list_of_dicts_missing_index_key():
    # Delta entry missing 'index' key should raise RuntimeError
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': [{'foo': 'baz'}]}
    with pytest.raises(RuntimeError):
        accumulate_delta(deepcopy(acc), deepcopy(delta)) # 5.34μs -> 4.18μs (27.6% faster)

def test_accumulate_list_of_dicts_non_int_index():
    # Delta entry with non-int index should raise TypeError
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': [{'foo': 'baz', 'index': 'not-an-int'}]}
    with pytest.raises(TypeError):
        accumulate_delta(deepcopy(acc), deepcopy(delta)) # 3.42μs -> 2.30μs (48.8% faster)

def test_accumulate_list_of_dicts_non_dict_entry():
    # Delta entry not a dict should raise TypeError
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': ['not-a-dict']}
    with pytest.raises(TypeError):
        accumulate_delta(deepcopy(acc), deepcopy(delta)) # 3.14μs -> 2.10μs (49.2% faster)


def test_accumulate_list_of_dicts_index_out_of_range():
    # Delta entry index out of range should insert
    acc = {'lst': [{'foo': 'bar', 'index': 0}]}
    delta = {'lst': [{'foo': 'baz', 'index': 1}]}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 4.22μs -> 2.70μs (56.5% faster)

def test_accumulate_mixed_types():
    # acc and delta have mixed types
    acc = {'a': 1, 'b': 'foo', 'c': [1, 2], 'd': {'x': 1}}
    delta = {'a': 2, 'b': 'bar', 'c': [3], 'd': {'x': 2, 'y': 3}}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 4.73μs -> 3.53μs (34.1% faster)

def test_accumulate_nested_dicts_and_lists():
    # Deeply nested dicts and lists
    acc = {'outer': {'inner': {'val': 'a', 'lst': [1]}}}
    delta = {'outer': {'inner': {'val': 'b', 'lst': [2, 3]}}}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 4.12μs -> 2.99μs (38.0% faster)

def test_accumulate_delta_does_not_mutate_inputs():
    # Ensure inputs are not mutated
    acc = {'a': 1}
    delta = {'a': 2}
    acc_copy = deepcopy(acc)
    delta_copy = deepcopy(delta)
    accumulate_delta(acc, delta) # 1.28μs -> 1.20μs (6.91% faster)

# --------------------------
# Large Scale Test Cases
# --------------------------

def test_large_flat_dict():
    # Large flat dict of ints
    acc = {i: i for i in range(1000)}
    delta = {i: 1 for i in range(1000)}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 163μs -> 157μs (3.85% faster)

def test_large_flat_dict_strings():
    # Large flat dict of strings
    acc = {str(i): 'a' for i in range(1000)}
    delta = {str(i): 'b' for i in range(1000)}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 129μs -> 126μs (2.01% faster)

def test_large_list_of_ints():
    # Large list of ints
    acc = {'lst': list(range(500))}
    delta = {'lst': list(range(500, 1000))}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 28.4μs -> 22.4μs (27.0% faster)

def test_large_list_of_dicts_insert_and_update():
    # Large list of dicts with updates and inserts
    acc = {'lst': [{'val': i, 'index': i} for i in range(500)]}
    delta = {'lst': [{'val': 1000+i, 'index': 500+i} for i in range(500)] + 
                   [{'val': 2000+i, 'index': i} for i in range(500)]}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 305μs -> 251μs (21.4% faster)
    # Check inserts
    for i in range(500, 1000):
        pass
    # Check updates
    for i in range(500):
        pass

def test_large_nested_dicts():
    # Large nested dicts
    acc = {'outer': {str(i): {'val': i} for i in range(100)}}
    delta = {'outer': {str(i): {'val': 1} for i in range(100)}}
    codeflash_output = accumulate_delta(deepcopy(acc), deepcopy(delta)); result = codeflash_output # 50.4μs -> 42.3μs (19.2% faster)
    for i in range(100):
        pass


#------------------------------------------------
from openai.lib.streaming._assistants import accumulate_delta

def test_accumulate_delta():
    accumulate_delta({'\x00\x00\x00\x00\x00': float('nan')}, {'\x00\x00\x00\x00\x00': float('nan'), '\x01\x02\x00\x02\x00': '', '\x00\x01\x00\x00\x00': 0})

def test_accumulate_delta_2():
    accumulate_delta({2: ''}, {2: 0})

def test_accumulate_delta_3():
    accumulate_delta({4: ''}, {3: '', 4: ''})

def test_accumulate_delta_4():
    accumulate_delta({'index': 0}, {'index': 0})
🔎 Concolic Coverage Tests and Runtime
Test File::Test Function Original ⏱️ Optimized ⏱️ Speedup
codeflash_concolic_g6lys7gg/tmpytw0lpzt/test_concolic_coverage.py::test_accumulate_delta 1.64μs 1.50μs 9.41%✅
codeflash_concolic_g6lys7gg/tmpytw0lpzt/test_concolic_coverage.py::test_accumulate_delta_2 2.04μs 1.48μs 38.6%✅
codeflash_concolic_g6lys7gg/tmpytw0lpzt/test_concolic_coverage.py::test_accumulate_delta_3 1.47μs 1.37μs 7.29%✅
codeflash_concolic_g6lys7gg/tmpytw0lpzt/test_concolic_coverage.py::test_accumulate_delta_4 843ns 855ns -1.40%⚠️

To edit these changes git checkout codeflash/optimize-accumulate_delta-mhd7bdjv and push.

Codeflash Static Badge

The optimization achieves a 13% speedup through three key changes:

**1. Eliminated Function Call Overhead:**
Replaced custom `is_dict()` and `is_list()` wrapper functions with direct `isinstance()` calls. The line profiler shows `is_dict()` was called 1,809 times, consuming 358µs. Direct `isinstance()` calls eliminate this overhead since Python's C-implemented `isinstance()` is highly optimized.

**2. Optimized Set Membership Check:**
Changed `if key == "index" or key == "type":` to `if key in {"index", "type"}:`. Set membership testing is faster than chained equality comparisons, especially when called frequently (4,109 times according to the profiler).

**3. Improved List Type Checking:**
Replaced `all(isinstance(x, (str, int, float)) for x in acc_value)` with an explicit loop that breaks early. This avoids potential generator overhead and provides better control flow for the type checking logic.

**Performance Impact by Test Case:**
- **List operations see the biggest gains** (24-66% faster): The elimination of function call overhead in list processing provides substantial benefits for cases like `test_accumulate_simple_list_of_scalars` and `test_accumulate_lists_of_primitives`.
- **Nested dictionary operations** show 16-39% improvements due to reduced overhead in recursive calls.
- **Simple scalar operations** see modest 3-7% gains from the set membership optimization.
- **Large-scale tests** demonstrate consistent 2-27% improvements, showing the optimizations scale well.

These optimizations are particularly effective for workloads with frequent list processing and nested dictionary operations, which are common in streaming data accumulation scenarios.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 October 30, 2025 09:07
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash labels Oct 30, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: High Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant