-
Notifications
You must be signed in to change notification settings - Fork 0
cuda pytorch
Peter Ebert edited this page Jun 27, 2025
·
1 revision
The following was tested on a ThinkPad P14s with nVidia Quadro T500 GPU under Kubuntu 24.04
$ sudo apt install nvidia-driver-570-server nvidia-utils-570-server nvidia-primeConfirm successful driver installation and check CUDA version:
$ nvidia-smi
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 570.133.20 Driver Version: 570.133.20 CUDA Version: 12.8 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA T500 Off | 00000000:01:00.0 Off | N/A |
| N/A 48C P8 N/A / 5001W | 5MiB / 4096MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
[...]
Note that the GPU is switched off in the above summary with prime-select intel.
You see the exact driver version (570.133.20) and the CUDA version (12.8).
Specify a minimal conda environment:
name: pytorch
dependencies:
- python=3.12.*
- pipAt the time of writing (2025/06), PyTorch does not yet officially support CUDA v12.8:
$ conda search pytorch
[...]
pytorch 2.7.1 cuda126_mkl_py312_h30b5a27_300 conda-forge
[...]Install and activate the above environment and install a PyTorch nightly build:
$ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128After successful installation, you can test your setup as follows:
# run this in an interactive python session
>>> import sys
'3.12.11 | packaged by conda-forge
>>> import torch
>>> torch.__version__
'2.7.1+cu128'
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
1
>>> torch.cuda.current_device()
0
>>> torch.cuda.device(0)
<torch.cuda.device object at 0x7982c7f4fd70>
>>> torch.cuda.get_device_name(0)
'NVIDIA T500'
>>> Copyright © 2022-2025 Core Unit Bioinformatics, Medical Faculty, HHU
All content in this Wiki is published under the CC BY-NC-SA 4.0 license.