## Overview
contentanalysis is a comprehensive R package designed for in-depth
analysis of scientific literature. It bridges the gap between raw PDF
documents and structured, analyzable data by combining advanced text
extraction, citation analysis, and bibliometric enrichment from external
databases.
AI-Enhanced PDF Import: The package supports AI-assisted PDF text extraction through Google’s Gemini API, enabling more accurate parsing of complex document layouts. To use this feature, you need to obtain an API key from Google AI Studio.
Integration with bibliometrix: This package complements the science
mapping analyses available in bibliometrix and its Shiny interface
biblioshiny. If you want to perform content analysis within a
user-friendly Shiny application with all the advantages of an
interactive interface, simply install bibliometrix and launch
biblioshiny, where you’ll find a dedicated Content Analysis menu
that implements all the analyses and outputs of this library.
The package goes beyond simple PDF parsing by creating a multi-layered analytical framework:
-
Intelligent PDF Processing: Extracts text from multi-column PDFs while preserving document structure (sections, paragraphs, references)
-
Citation Intelligence: Detects and extracts citations in multiple formats (numbered, author-year, narrative, parenthetical) and maps them to their precise locations in the document
-
Bibliometric Enrichment: Automatically retrieves and integrates metadata from external sources:
- CrossRef API: Retrieves structured reference data including authors, publication years, journals, and DOIs
- OpenAlex: Enriches references with additional metadata, filling gaps and providing comprehensive bibliographic information
-
Citation-Reference Linking: Implements sophisticated matching algorithms to connect in-text citations with their corresponding references, handling various citation styles and ambiguous cases
-
Context-Aware Analysis: Extracts the textual context surrounding each citation, enabling semantic analysis of how references are used throughout the document
-
Network Visualization: Creates interactive networks showing citation co-occurrence patterns and conceptual relationships within the document
PDF Document → Text Extraction → Citation Detection → Reference Parsing
↓
CrossRef/OpenAlex APIs
↓
Citation-Reference Matching → Enriched Dataset
↓
Network Analysis + Text Analytics + Bibliometric Indicators
The result is a rich, structured dataset that transforms a static PDF into an analyzable knowledge object, ready for: - Content analysis: Understanding what concepts and methods are discussed - Citation analysis: Examining how knowledge is constructed and referenced - Temporal analysis: Tracking the evolution of ideas through citation patterns - Network analysis: Visualizing intellectual connections - Readability assessment: Evaluating text complexity and accessibility
- Multi-column layout support with automatic section detection
- Structure preservation (title, abstract, introduction, methods, results, discussion, references)
- Handling of complex layouts and special characters
- DOI extraction from PDF metadata
- Comprehensive detection of citation formats:
- Numbered citations:
[1],[1-3],[1,5,7]
- Numbered citations:
- Author-year citations:
(Smith, 2020),(Smith et al., 2020) - Narrative citations:
Smith (2020) demonstrated... - Complex citations:
(see Smith, 2020; Jones et al., 2021) - Citation context extraction (surrounding text analysis)
- Citation positioning and density metrics
- Section-wise citation distribution
- Local parsing: Extract references from the document’s reference section
- CrossRef integration: Retrieve structured metadata for cited works via DOI
- OpenAlex integration: Enrich references with additional bibliographic data
- Automatic gap-filling: Complete missing author names, years, journal names
- Structured reference format: Standardized author lists, publication years, journals
- Intelligent matching algorithms with multiple confidence levels:
- High confidence: Exact author-year matches
- Medium confidence: Fuzzy matching for variant author names
- Disambiguation: Handles multiple works by the same author
- Support for various citation styles (APA, Chicago, Vancouver, etc.)
- Handles complex cases: multiple authors, “et al.”, year suffixes (2020a, 2020b)
- Interactive citation co-occurrence networks
- Distance-based edge weighting (closer citations = stronger connections)
- Section-aware visualization (color-coded by document section)
- Multi-section citation detection (citations appearing in multiple sections)
- Network statistics: centrality, clustering, community detection potential
- Word frequency analysis with stopword removal
- N-gram extraction (bigrams, trigrams)
- Lexical diversity metrics
- Readability indices (Flesch, Gunning Fog, SMOG, Coleman-Liau)
- Word distribution tracking across document sections
- Methodological term tracking
- Citation density (citations per 1000 words)
- Citation type distribution (narrative vs. parenthetical)
- Co-citation analysis
- Reference age distribution
- Journal diversity metrics
You can install the development version from GitHub:
# install.packages("devtools")
devtools::install_github("massimoaria/contentanalysis")Complete workflow analyzing a real scientific paper:
library(contentanalysis)The paper is an open access article by Aria et al.:
Aria, M., Cuccurullo, C., & Gnasso, A. (2021). A comparison among interpretative proposals for Random Forests. Machine Learning with Applications, 6, 100094.
paper_url <- "https://raw.githubusercontent.com/massimoaria/contentanalysis/master/inst/examples/example_paper.pdf"
download.file(paper_url, destfile = "example_paper.pdf", mode = "wb")doc <- pdf2txt_auto("example_paper.pdf",
n_columns = 2,
citation_type = "author_year")
#> Using 17 sections from PDF table of contents
#> Found 16 sections: Preface, Introduction, Related work, Internal processing approaches, Random forest extra information, Visualization toolkits, Post-Hoc approaches, Size reduction, Rule extraction, Local explanation, Comparison study, Experimental design, Analysis, Conclusion, Acknowledgment, References
#> Normalized 77 references with consistent \n\n separators
# Check detected sections
names(doc)
#> [1] "Full_text" "Preface"
#> [3] "Introduction" "Related work"
#> [5] "Internal processing approaches" "Random forest extra information"
#> [7] "Visualization toolkits" "Post-Hoc approaches"
#> [9] "Size reduction" "Rule extraction"
#> [11] "Local explanation" "Comparison study"
#> [13] "Experimental design" "Analysis"
#> [15] "Conclusion" "Acknowledgment"
#> [17] "References"analysis <- analyze_scientific_content(
text = doc,
doi = "10.1016/j.mlwa.2021.100094",
mailto = "your@email.com",
citation_type = "author_year"
)
#> Extracting author-year citations only
#> Attempting to retrieve references from CrossRef...
#> Successfully retrieved 33 references from CrossRef
#> Fetching Open Access metadata for 14 DOIs from OpenAlex...
#> Successfully retrieved metadata for 14 references from OpenAlexThis single function call:
- Extracts all citations from the document
- Retrieves reference metadata from CrossRef using the paper’s DOI
- Enriches references with additional data from OpenAlex
- Matches citations to references with confidence scoring
- Performs text analysis and computes bibliometric indicators
analysis$summary
#> $total_words_analyzed
#> [1] 3473
#>
#> $unique_words
#> [1] 1312
#>
#> $citations_extracted
#> [1] 50
#>
#> $narrative_citations
#> [1] 15
#>
#> $parenthetical_citations
#> [1] 35
#>
#> $complex_citations_parsed
#> [1] 12
#>
#> $lexical_diversity
#> [1] 0.3777714
#>
#> $average_citation_context_length
#> [1] 3186.16
#>
#> $citation_density_per_1000_words
#> [1] 6.57
#>
#> $references_parsed
#> [1] 33
#>
#> $citations_matched_to_refs
#> [1] 43
#>
#> $match_quality
#> # A tibble: 3 × 3
#> match_confidence n percentage
#> <chr> <int> <dbl>
#> 1 high 43 86
#> 2 no_match_author 6 12
#> 3 no_match_year 1 2
#>
#> $citation_type_used
#> [1] "author_year"readability <- calculate_readability_indices(doc$Full_text, detailed = TRUE)
readability
#> # A tibble: 1 × 12
#> flesch_kincaid_grade flesch_reading_ease automated_readability_index
#> <dbl> <dbl> <dbl>
#> 1 12.4 33.9 11.8
#> # ℹ 9 more variables: gunning_fog_index <dbl>, n_sentences <int>,
#> # n_words <int>, n_syllables <dbl>, n_characters <int>,
#> # n_complex_words <int>, avg_sentence_length <dbl>,
#> # avg_syllables_per_word <dbl>, pct_complex_words <dbl>analysis$citation_metrics$type_distribution
#> # A tibble: 10 × 3
#> citation_type n percentage
#> <chr> <int> <dbl>
#> 1 parsed_from_multiple 12 24
#> 2 author_year_basic 9 18
#> 3 author_year_and 8 16
#> 4 narrative_etal 7 14
#> 5 author_year_etal 3 6
#> 6 narrative_three_authors_and 3 6
#> 7 narrative_two_authors_and 3 6
#> 8 narrative_four_authors_and 2 4
#> 9 see_citations 2 4
#> 10 doi_pattern 1 2head(analysis$citation_contexts[, c("citation_text_clean", "section", "full_context")])
#> # A tibble: 6 × 3
#> citation_text_clean section full_context
#> <chr> <chr> <chr>
#> 1 (Mitchell, 1997) Introduction on their own and make…
#> 2 (Breiman, Friedman, Olshen, & Stone, 1984) Introduction are supervised learni…
#> 3 https://doi.org/10.1016/j.mlwa.2021.100094 Introduction author E mail address…
#> 4 (Breiman, 2001) Introduction node of a random subs…
#> 5 (see Breiman, 1996) Introduction single training set a…
#> 6 (Hastie, Tibshirani, & Friedman, 2009) Introduction by calculating predic…Create interactive network visualizations showing how citations co-occur within your document:
# Create citation network
network <- create_citation_network(
citation_analysis_results = analysis,
max_distance = 800, # Max distance between citations (characters)
min_connections = 2, # Minimum connections to include a node
show_labels = TRUE
)
# Display interactive network
networkstats <- attr(network, "stats")
# Network size
cat("Nodes:", stats$n_nodes, "\n")
#> Nodes: 30
cat("Edges:", stats$n_edges, "\n")
#> Edges: 48
cat("Average distance:", stats$avg_distance, "characters\n")
#> Average distance: 227 characters
# Citations by section
print(stats$section_distribution)
#> primary_section n
#> 1 Related work 6
#> 2 Introduction 5
#> 3 Random forest extra information 4
#> 4 Size reduction 4
#> 5 Experimental design 3
#> 6 Visualization toolkits 3
#> 7 Local explanation 2
#> 8 Rule extraction 2
#> 9 Analysis 1
# Multi-section citations
if (nrow(stats$multi_section_citations) > 0) {
print(stats$multi_section_citations)
}
#> citation_text
#> 1 (Haddouchi & Berrado, 2019)
#> 2 (Meinshausen, 2010)
#> 3 (Deng, 2019)
#> sections n_sections
#> 1 Related work, Random forest extra information, Rule extraction 3
#> 2 Rule extraction, Comparison study, Analysis 3
#> 3 Rule extraction, Comparison study, Analysis 3The citation network visualization includes:
- Node size: Proportional to number of connections
- Node color: Indicates the primary section where citations appear
- Node border: Thicker border (3px) for citations appearing in multiple sections
- Edge thickness: Decreases with distance (closer citations = thicker edges)
- Edge color:
- Red: Very close citations (≤300 characters)
- Blue: Moderate distance (≤600 characters)
- Gray: Distant citations (>600 characters)
- Interactive features: Zoom, pan, drag nodes, highlight neighbors on hover
# Focus on very close citations only
network_close <- create_citation_network(
analysis,
max_distance = 300,
min_connections = 1
)
# Show only highly connected citations
network_hubs <- create_citation_network(
analysis,
max_distance = 1000,
min_connections = 5
)
# Hide labels for cleaner visualization
network_clean <- create_citation_network(
analysis,
show_labels = FALSE
)method_terms <- c("machine learning", "regression", "validation", "dataset")
word_dist <- calculate_word_distribution(doc, method_terms)# Create and save the plot
p <- plot_word_distribution(word_dist, plot_type = "line", smooth = TRUE, show_points = TRUE)
# Save as static image for GitHub
if (!dir.exists("man/figures")) dir.create("man/figures", recursive = TRUE)
htmlwidgets::saveWidget(p, "temp_plot.html", selfcontained = TRUE)
webshot::webshot("temp_plot.html", "man/figures/README-word-distribution.png",
vwidth = 1000, vheight = 600)file.remove("temp_plot.html")
#> [1] TRUEhead(analysis$word_frequencies, 10)
#> # A tibble: 10 × 4
#> word n frequency rank
#> <chr> <int> <dbl> <int>
#> 1 model 45 0.0130 1
#> 2 forest 42 0.0121 2
#> 3 accuracy 40 0.0115 3
#> 4 trees 38 0.0109 4
#> 5 random 34 0.00979 5
#> 6 learning 27 0.00777 6
#> 7 set 27 0.00777 7
#> 8 variable 26 0.00749 8
#> 9 data 25 0.00720 9
#> 10 rule 25 0.00720 10head(analysis$network_data)
#> # A tibble: 6 × 5
#> citation1 citation2 distance type1 type2
#> <chr> <chr> <int> <chr> <chr>
#> 1 (Mitchell, 1997) (Breiman, Fri… 701 auth… auth…
#> 2 (Mitchell, 1997) https://doi.o… 992 auth… doi_…
#> 3 (Breiman, Friedman, Olshen, & Stone, 1984) https://doi.o… 250 auth… doi_…
#> 4 (Breiman, 2001) (see Breiman,… 257 auth… see_…
#> 5 (Breiman, 2001) (Hastie, Tibs… 617 auth… auth…
#> 6 (Breiman, 2001) (Hastie et al… 829 auth… auth…# View parsed references (enriched with CrossRef and OpenAlex)
head(analysis$parsed_references[, c("ref_first_author", "ref_year", "ref_journal", "ref_source")])
#> ref_first_author ref_year ref_journal ref_source
#> 1 Adadi 2018 IEEE Access crossref
#> 2 <NA> <NA> <NA> crossref
#> 3 Branco 2016 ACM Computing Surveys crossref
#> 4 Breiman 1996 Machine Learning crossref
#> 5 Breiman 2001 Machine Learning crossref
#> 6 Breiman 1984 International Group crossref
# Check data sources
table(analysis$parsed_references$ref_source)
#>
#> crossref
#> 33The ref_source column indicates where the data came from:
"crossref": Retrieved from CrossRef API"parsed": Extracted from document’s reference section- References may be enriched with OpenAlex data even if originally from CrossRef
# View citation-reference matches with confidence levels
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
head(analysis$citation_references_mapping[, c("citation_text_clean", "ref_authors",
"ref_year", "match_confidence")])
#> # A tibble: 6 × 4
#> citation_text_clean ref_authors ref_year match_confidence
#> <chr> <chr> <chr> <chr>
#> 1 (Mitchell, 1997) Mitchell 1997 high
#> 2 (Breiman, Friedman, Olshen, & Stone, 19… Breiman 1984 high
#> 3 https://doi.org/10.1016/j.mlwa.2021.100… <NA> <NA> no_match_year
#> 4 (Breiman, 2001) Breiman, L. 2001 high
#> 5 (see Breiman, 1996) Breiman, L. 1996 high
#> 6 (Hastie, Tibshirani, & Friedman, 2009) Hastie 2009 high
# Match quality distribution
table(analysis$citation_references_mapping$match_confidence)
#>
#> high no_match_author no_match_year
#> 43 6 1# Find all citations to works by Smith
analysis$citation_references_mapping %>%
filter(grepl("Smith", ref_authors, ignore.case = TRUE)) %>%
select(citation_text_clean, ref_full_text, match_confidence)
#> # A tibble: 0 × 3
#> # ℹ 3 variables: citation_text_clean <chr>, ref_full_text <chr>,
#> # match_confidence <chr># If OpenAlex data was retrieved
if (!is.null(analysis$references_oa)) {
# View enriched metadata
head(analysis$references_oa[, c("title", "publication_year", "cited_by_count",
"type", "oa_status")])
# Analyze citation impact
summary(analysis$references_oa$cited_by_count)
}
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 93.0 279.5 1712.5 11102.4 4573.8 110356.0analysis$citation_metrics$section_distribution
#> # A tibble: 15 × 3
#> section n percentage
#> <fct> <int> <dbl>
#> 1 Preface 0 0
#> 2 Introduction 7 14
#> 3 Related work 9 18
#> 4 Internal processing approaches 0 0
#> 5 Random forest extra information 6 12
#> 6 Visualization toolkits 4 8
#> 7 Post-Hoc approaches 0 0
#> 8 Size reduction 6 12
#> 9 Rule extraction 3 6
#> 10 Local explanation 5 10
#> 11 Comparison study 2 4
#> 12 Experimental design 4 8
#> 13 Analysis 4 8
#> 14 Conclusion 0 0
#> 15 Acknowledgment 0 0# Track disease-related terms
disease_terms <- c("covid", "pandemic", "health", "policy", "vaccination")
dist <- calculate_word_distribution(doc, disease_terms, use_sections = TRUE)
# View frequencies by section
dist %>%
select(segment_name, word, count, percentage) %>%
arrange(segment_name, desc(percentage))
#> # A tibble: 1 × 4
#> segment_name word count percentage
#> <chr> <chr> <int> <dbl>
#> 1 Conclusion health 1 0.328
# Visualize trends
#plot_word_distribution(dist, plot_type = "area", smooth = FALSE)pdf2txt_auto(): Import PDF with automatic section detectionreconstruct_text_structured(): Advanced text reconstructionextract_doi_from_pdf(): Extract DOI from PDF metadata
analyze_scientific_content(): Comprehensive content and citation analysis with API enrichmentparse_references_section(): Parse reference list from textmatch_citations_to_references(): Match citations to references with confidence scoringget_crossref_references(): Retrieve references from CrossRef API
create_citation_network(): Create interactive citation co-occurrence network
calculate_readability_indices(): Compute readability scores (Flesch, Gunning Fog, SMOG, Coleman-Liau)calculate_word_distribution(): Track word frequencies across document sectionsreadability_multiple(): Batch readability analysis for multiple documents
plot_word_distribution(): Interactive visualization of word distribution across sections
get_example_paper(): Download example paper for testingmap_citations_to_segments(): Map citations to document sections/segments
The package integrates with CrossRef’s REST API to retrieve structured bibliographic data:
- Endpoint:
https://api.crossref.org/works/{doi}/references - Data retrieved: Authors, publication year, journal/source, article title, DOI
- Rate limits: Polite pool requires email (use
mailtoparameter) - More info: https://api.crossref.org
OpenAlex provides comprehensive scholarly metadata:
- Endpoint: Via
openalexRpackage - Data retrieved: Complete author lists, citation counts, open access status, institutional affiliations
- Rate limits: 100,000 requests/day (polite pool with email), 10 requests/second
- API key: Optional, increases rate limits. Set with
openalexR::oa_apikey() - More info: https://openalex.org
# For CrossRef (recommended to avoid rate limits)
analysis <- analyze_scientific_content(
text = doc,
doi = "10.xxxx/xxxxx",
mailto = "your@email.com" # Your email for CrossRef polite pool
)
# For OpenAlex (optional, increases rate limits)
# Get free API key at: https://openalex.org/
openalexR::oa_apikey("your-api-key-here")Core: pdftools, dplyr, tidyr, stringr, tidytext, tibble, httr2, visNetwork, openalexR
Suggested: plotly, RColorBrewer, scales (for visualization)
If you use this package in your research, please cite:
Massimo Aria (2025). contentanalysis: Scientific Content and Citation Analysis from PDF Documents.
R package version 0.1.0.
https://github.com/massimoaria/contentanalysis
GPL (>= 3)
Please report issues at: https://github.com/massimoaria/contentanalysis/issues
Contributions are welcome! Please feel free to submit a Pull Request.


