Skip to content
/ ggsced Public

❗ This is a read-only mirror of the CRAN R package repository. ggsced — Utilities and Helpers for Single Case Experimental Design (SCED) using 'ggplot2'

Notifications You must be signed in to change notification settings

cran/ggsced

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ggsced

License: MIT R package Codecov test coverage

Utilities and helpers for Single-Case Experimental Design (SCED) using ggplot2

Overview

The ggsced package extends the powerful ggplot2 visualization framework to provide specialized tools for creating high-quality graphics for Single-Case Experimental Design (SCED) research. SCED studies are a crucial methodology in behavioral and educational research, where individual participants serve as their own controls through carefully designed experimental phases. This approaches rests on careful visual inspection of data presented in graphs that clearly delineate phase changes and patterns.

Purpose

Single-case experimental designs require specific visualization conventions that are not easily achieved with standard plotting approaches. The ggsced package bridges the gap between the flexibility of ggplot2 and the specific visualization needs of single-case researchers by providing:

  • Professional Phase Change Lines: Clear visual demarcation between experimental phases that meet publication standards
  • Multiple Baseline Design Support: Staggered intervention implementation across participants with precise phase change timing
  • Complex Data Pattern Visualization: Support for multiple dependent variables plotted simultaneously
  • Publication-Ready Graphics: APA and journal-compliant figures with consistent styling

Key Features

Core Visualization Functions

  • ggsced(): Primary function for adding phase change lines to existing ggplot objects
  • ggsced_style_x() and ggsced_style_y(): Styling functions for axes that follow SCED conventions with broken axis appearance

Design Pattern Support

  • Multiple Baseline Designs: Staggered intervention implementation across participants
  • Alternating Treatment Designs: Rapid alternation between different intervention conditions
  • Functional Analysis Designs: Multiple dependent variables with distinct visual markers
  • Complex Phase Patterns: Support for multiple intervention phases within studies

Professional Styling

  • Consistent Visual Standards: Publication-quality aesthetics with proper fonts and scaling
  • Broken Axis Convention: SCED-specific axis styling with disconnected x/y axes
  • Flexible Customization: Modular design allows adaptation to diverse research needs
  • Multi-panel Support: Seamless integration with ggplot2 faceting for participant comparisons

Installation

# Install from GitHub (development version)
# install.packages("devtools")
devtools::install_github("miyamot0/ggsced")

# Load the package
library(ggsced)

Quick Start

Example Multiple Baseline: Gilroy et al. (2015)

library(ggsced)
library(tidyverse)
library(ggh4x)

data <- Gilroyetal2021

y_mult = .05
x_mult = .02

p = ggplot(data, aes(Session, Responding,
                     group = Condition)) +

  geom_line() +
  geom_point(size = 2.5,
             pch = 21,
             fill = 'black') +

  geom_line(mapping = aes(Session, Reinforcers),
            lty = 2) +
  geom_point(mapping = aes(Session, Reinforcers),
             size = 2.5,
             pch = 24,
             fill = 'white') +
  scale_x_continuous(breaks = c(1:25),
                     limits = c(1, 25),
                     expand = expansion(mult = x_mult)) +
  facet_grid2(Participant ~ .,
              scales = "free_y",
              remove_labels = "x",
              axes = "x")  +
  facetted_pos_scales(
    y = list(
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 10, 20),
                         limits = c(0, 20),
                         expand = expansion(mult = y_mult)),
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 5, 10),
                         limits = c(0, 10),
                         expand = expansion(mult = y_mult)),
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 10, 20),
                         limits = c(0, 20),
                         expand = expansion(mult = y_mult))
    )
  ) +
  theme(
    text = element_text(size = 14,
                        color = 'black'),
    panel.background = element_blank(),
    strip.background = element_blank(),
    strip.text = element_blank()
  ) +
  ggsced_style_x(x_mult, lwd = 2) +
  ggsced_style_y(y_mult, lwd = 2)

simple_facet_labels_df = ggsced_facet_labels(p, y = 20)
simple_facet_labels_df[2, "Responding"] <- 10
simple_facet_labels_df[3, "Responding"] <- 8

p <- p + geom_text(data = simple_facet_labels_df,
                   hjust = 1,
                   vjust = 0.5,
                   mapping = aes(label = label))

simple_condition_labels_df = ggsced_condition_labels(p)
simple_condition_labels_df$label = gsub("2", "", simple_condition_labels_df$label)

p <- p + geom_text(data = simple_condition_labels_df,
                   mapping = aes(label = label),
                   hjust = 0.5,
                   vjust = 0.5)

# Create extra rows for Bx Labels
extra_labels_df <- simple_condition_labels_df[1:2,]
extra_labels_df$Session <- 21.25
extra_labels_df$x0 <- 21
extra_labels_df$x1 <- 19.5
extra_labels_df$y <- 15

extra_labels_df[1, "label"] <- 'Responding'
extra_labels_df[1, "Responding"] <- 15

extra_labels_df[2, "label"] <- 'Reinforcers'
extra_labels_df[2, "Responding"] <- 5
extra_labels_df[2, "y"] <- 5

p <- p + geom_text(data = extra_labels_df,
                   mapping = aes(label = label),
                   hjust = 0,
                   vjust = 0.5)

p <- p + geom_segment(data = extra_labels_df,
                      mapping = aes(x = x0,
                                    y,
                                    xend = x1,
                                    yend = y),
                      arrow = arrow(length = unit(0.25, "cm")))

staggered_pls = list(
  '1' = c(3.5,   3.5,   3.5),
  '2' = c(6.5,   6.5,   8.5),
  '3' = c(9.5,   9.5,  11.5),
  '4' = c(12.5,  16.5,  16.5),
  '5' = c(15.5,  22.5,  19.5)
)

offsets_pls = list(
  '1' = c(F, F, F),
  '2' = c(F, F, F),
  '3' = c(F, F, F),
  '4' = c(F, F, F),
  '5' = c(T, F, F)
)

ggsced(p, legs = staggered_pls, offs = offsets_pls)

Gilroy et al. (2015) Figure

Example Augmented Multiple Baseline: Gilroy et al. (2021)

library(ggsced)
library(tidyverse)
library(ggh4x)

data <- Gilroyetal2021

y_mult = .05
x_mult = .02

p = ggplot(data, aes(Session, Responding,
                     group = Condition)) +

  geom_line() +
  geom_point(size = 2.5,
             pch = 21,
             fill = 'black') +

  geom_line(mapping = aes(Session, Reinforcers),
            lty = 2) +
  geom_point(mapping = aes(Session, Reinforcers),
             size = 2.5,
             pch = 24,
             fill = 'white') +
  scale_x_continuous(breaks = c(1:25),
                     limits = c(1, 25),
                     expand = expansion(mult = x_mult)) +
  facet_grid2(Participant ~ .,
              scales = "free_y",
              remove_labels = "x",
              axes = "x")  +
  facetted_pos_scales(
    y = list(
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 10, 20),
                         limits = c(0, 20),
                         expand = expansion(mult = y_mult)),
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 5, 10),
                         limits = c(0, 10),
                         expand = expansion(mult = y_mult)),
      scale_y_continuous(name = "Frequency",
                         breaks = c(0, 10, 20),
                         limits = c(0, 20),
                         expand = expansion(mult = y_mult))
    )
  ) +
  theme(
    text = element_text(size = 14,
                        color = 'black'),
    panel.background = element_blank(),
    strip.background = element_blank(),
    strip.text = element_blank()
  ) +
  ggsced_style_x(x_mult, lwd = 2) +
  ggsced_style_y(y_mult, lwd = 2)

simple_facet_labels_df = ggsced_facet_labels(p, y = 20)
simple_facet_labels_df[2, "Responding"] <- 10
simple_facet_labels_df[3, "Responding"] <- 8

p <- p + geom_text(data = simple_facet_labels_df,
                   hjust = 1,
                   vjust = 0.5,
                   mapping = aes(label = label))

simple_condition_labels_df = ggsced_condition_labels(p)
simple_condition_labels_df$label = gsub("2", "", simple_condition_labels_df$label)

p <- p + geom_text(data = simple_condition_labels_df,
                   mapping = aes(label = label),
                   hjust = 0.5,
                   vjust = 0.5)

# Create extra rows for Bx Labels
extra_labels_df <- simple_condition_labels_df[1:2,]
extra_labels_df$Session <- 21.25
extra_labels_df$x0 <- 21
extra_labels_df$x1 <- 19.5
extra_labels_df$y <- 15

extra_labels_df[1, "label"] <- 'Responding'
extra_labels_df[1, "Responding"] <- 15

extra_labels_df[2, "label"] <- 'Reinforcers'
extra_labels_df[2, "Responding"] <- 5
extra_labels_df[2, "y"] <- 5

p <- p + geom_text(data = extra_labels_df,
                   mapping = aes(label = label),
                   hjust = 0,
                   vjust = 0.5)

p <- p + geom_segment(data = extra_labels_df,
                      mapping = aes(x = x0,
                                    y,
                                    xend = x1,
                                    yend = y),
                      arrow = arrow(length = unit(0.25, "cm")))

staggered_pls = list(
  '1' = c(3.5,   3.5,   3.5),
  '2' = c(6.5,   6.5,   8.5),
  '3' = c(9.5,   9.5,  11.5),
  '4' = c(12.5,  16.5,  16.5),
  '5' = c(15.5,  22.5,  19.5)
)

offsets_pls = list(
  '1' = c(F, F, F),
  '2' = c(F, F, F),
  '3' = c(F, F, F),
  '4' = c(F, F, F),
  '5' = c(T, F, F)
)

ggsced(p, legs = staggered_pls, offs = offsets_pls)

Gilroy et al. (2021) Figure

Other Example Datasets

The package includes several real research datasets for learning and demonstration:

  • Gilroyetal2015: Multiple baseline design data
  • Gilroyetal2021: Cross-lagged Alternating Treatment Design

Documentation

  • Comprehensive vignette: Detailed examples with real research data
  • Function documentation: Complete help files for all exported functions
  • Demo files: Executable examples in the demo/ directory
  • Test suite: Extensive testing to ensure reliability

Dependencies

  • ggplot2: Core plotting functionality
  • grid: Low-level graphics operations
  • gtable: Plot layout management
  • ggh4x: Extended ggplot2 functionality

Author and Contact

Shawn P. Gilroy, Ph.D.
Louisiana State University
📧 sgilroy1@lsu.edu
🆔 ORCID: 0000-0002-1097-8366

Bug Reports and Feature Requests

If you encounter any issues or have suggestions for improvements, please:

  1. Check existing issues: Browse the GitHub Issues to see if your issue has already been reported
  2. Create a new issue: If your issue is new, please open a new issue with:
    • A clear, descriptive title
    • Detailed description of the problem or feature request
    • Minimal reproducible example (if reporting a bug)
    • Your session info (sessionInfo())
    • Expected vs. actual behavior

License

This package is licensed under the GPL License (V2+).

Citation

If you use ggsced in your research, please cite it appropriately:

Gilroy, S. P. (2026). ggsced: Utilities and helpers for Single-Case
Experimental Design using ggplot2. R package version 0.1.0.
https://github.com/miyamot0/ggsced

Acknowledgments

This package was developed to support the single-case research community with publication-quality visualization tools. Special thanks to the researchers who provided data for demonstration examples and to the broader R community for the foundation provided by ggplot2 and related packages.


Keywords: single-case design, SCED, behavioral research, data visualization, ggplot2, R package

About

❗ This is a read-only mirror of the CRAN R package repository. ggsced — Utilities and Helpers for Single Case Experimental Design (SCED) using 'ggplot2'

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages