Skip to content

cs-eu/gaussian-splatting-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Gaussian Splatting Framework Logo

Gaussian Splatting Framework

A Unified Framework for State-of-the-Art Gaussian Splatting Methods

This repository collects scripts, code, and utilities to run and evaluate various implementations of Gaussian Splatting for 3D scene reconstruction and rendering.

Project Structure

  • implementations/: Wrappers and scripts for running different Gaussian Splatting implementations.
    • base.py: Base class for implementations.
    • original_gaussian_splatting.py: Integration for the original 3D Gaussian Splatting method.
    • create_depth_maps.py: Depth map creation utilities.
    • dynamic_gaussian.py: Dynamic Gaussian Splatting implementation.
    • langsplat.py: LangSplat method integration.
    • light_gaussian.py: Lightweight Gaussian Splatting implementation.
    • viewer.py: Viewer utilities for visualizing results.
  • utils/: Utilities for environment management and running implementations.
    • base_environment_manager.py, conda_manager.py, repo_manager.py, command_runner.py, pointcloud_watcher.py: Tools for managing environments, repositories, and scripts.
  • config.py: Project-level configuration.
  • main.py: Entry point for running and evaluating Gaussian Splatting implementations.
  • Dockerfile: Container setup for reproducible environments.
  • logo.png: Project logo.

Usage

  1. Setup the project

    git clone https://gitlab.lrz.de/mlmiss25/gscaf/gs_framework.git
    cd gs_framework

    Use mount_zip.sh to mount zipped datasets (e.g., for the Dynamic 3D Gaussian dataset on the TUM CAMP cluster, use ./mount_zip.sh /mnt/datasets/dynamic-gaussians/data.zip /tmp/dynamic-gaussian) and make sure the dataset paths in config.py are correct.

  2. Print Usage

    python main.py --help
  3. Example: Run the Original Implementation

    python main.py original --use_viewer

    Replace the flags as needed. See python main.py original --help for all options.

Usage of the Webviewer

 git clone https://gitlab.lrz.de/mlmiss25/gscaf/gs_framework.git
 cd gs_framework
 python main.py viewer
  1. Use the install buttons to install and train the different implementations

  2. Once the training is done, find the trained Gaussian splatting models in the output folder, and import the .ply, .pth, or .npz files via the import button of the viewer

About

Framework for running, evaluating, and comparing different Gaussian Splatting implementations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages