Skip to content

Local-first Code Mode implementation with protocol-agnostic support for MCP, OpenAPI, and native tools

Notifications You must be signed in to change notification settings

danieliser/codemode-unified

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🚀 CodeMode Unified

Production-Ready Code Execution Platform for AI Agents

A high-performance, MCP-enabled code execution service that lets AI agents run JavaScript/TypeScript with full access to tools, APIs, and knowledge systems. Built for speed, security, and seamless integration with Claude Code and other AI platforms.

License: MIT Node.js TypeScript Status


✨ What Makes It Special

🎯 Dual Architecture

  • MCP Server Mode: Direct integration with Claude Code via Model Context Protocol
  • HTTP Backend Mode: RESTful API for any AI platform or custom integration
  • Both architectures share the same powerful runtime engine

Multi-Runtime Execution

  • Bun Runtime ⭐ Recommended - Full async/await, modern APIs, fastest execution
  • QuickJS - Lightweight, 5-10ms startup, perfect for quick operations
  • Deno - Secure by default with explicit permissions
  • isolated-vm - V8 isolates for maximum control
  • E2B - Cloud sandboxes for untrusted code

🧠 MCP Tool Integration

Execute code with instant access to your entire MCP ecosystem:

  • AutoMem: AI memory with graph relationships and vector search
  • Context7: Official library documentation on demand
  • Sequential Thinking: Multi-step reasoning for complex analysis
  • HelpScout: Customer support data access
  • WordPress API: Content management operations
  • ...and any other MCP server you have configured

🔒 Security First

  • Sandboxed execution with memory/CPU limits
  • Capability-based permissions
  • Network access controls
  • Audit logging for all operations
  • OAuth 2.1 + JWT authentication

🎬 Quick Start

Prerequisites

  • Node.js 20+
  • npm or yarn
  • (Optional) Bun runtime for best performance

Installation

# Clone or navigate to the project
cd codemode-unified

# Install dependencies
npm install

# Build the project
npm run build

Start the Services

Option 1: MCP Server (for Claude Code)

npm run start:mcp
# MCP server starts on stdio - ready for Claude Code integration

Option 2: HTTP Backend

npm start
# HTTP server starts on http://localhost:3001

Option 3: Development Mode

npm run dev        # Auto-reload on changes
npm run dev:bun    # Use Bun runtime specifically

🔧 Configuration

MCP Server Setup (Claude Code)

Add to your .mcp.json:

{
  "mcpServers": {
    "codemode-unified": {
      "command": "node",
      "args": ["/path/to/codemode-unified/dist/mcp-server.js"],
      "env": {
        "MCP_CONFIG_PATH": "/path/to/your/.mcp.json"
      }
    }
  }
}

The MCP server automatically discovers and connects to all your other MCP servers (AutoMem, Context7, etc.) from the same config file.

HTTP Backend Setup

Create .env:

PORT=3001
HOST=localhost

# MCP Integration
MCP_CONFIG_PATH=/path/to/your/.mcp.json

# Optional: Runtime selection
DEFAULT_RUNTIME=bun

💡 Usage Examples

Via MCP (Claude Code)

// Claude can execute this directly through the MCP tool
const pokemonResponse = await fetch('https://pokeapi.co/api/v2/pokemon/pikachu');
const pokemon = await pokemonResponse.json();

// Store in AutoMem for later recall
const memory = await mcp.automem.store_memory({
  content: `Pokemon: ${pokemon.name} has ${pokemon.abilities.length} abilities`,
  tags: ['pokemon', 'api-test'],
  importance: 0.8
});

// Return structured results
return {
  pokemon: pokemon.name,
  memory_id: memory.memory_id,
  status: 'success'
};

Via HTTP API

curl -X POST http://localhost:3001/execute \
  -H "Content-Type: application/json" \
  -d '{
    "code": "const result = await fetch(\"https://api.github.com/users/danieliser\").then(r => r.json()); return { username: result.login, repos: result.public_repos };",
    "runtime": "bun",
    "timeout": 10000
  }'

Response:

{
  "success": true,
  "result": {
    "username": "danieliser",
    "repos": 42
  },
  "stdout": "",
  "stderr": "",
  "execution_time_ms": 261
}

🎯 Real-World Workflows

1. API Aggregation + Knowledge Storage

// Fetch data from multiple APIs in parallel
const [github, twitter, linkedin] = await Promise.all([
  fetch('https://api.github.com/users/username').then(r => r.json()),
  fetch('https://api.twitter.com/user/username').then(r => r.json()),
  fetch('https://api.linkedin.com/profile/username').then(r => r.json())
]);

// Store aggregated profile in AutoMem
await mcp.automem.store_memory({
  content: `Profile: ${github.name} - ${github.bio}`,
  tags: ['profile', 'social-media'],
  metadata: {
    github_repos: github.public_repos,
    twitter_followers: twitter.followers_count,
    linkedin_connections: linkedin.connections
  }
});

return { profile: 'stored', sources: 3 };

2. Research + Documentation Lookup

// Use Context7 to get official React docs
const reactDocs = await mcp.context7.get_library_docs({
  context7CompatibleLibraryID: '/facebook/react',
  topic: 'hooks'
});

// Analyze with Sequential Thinking
const analysis = await mcp.sequential_thinking.sequentialthinking({
  thought: "Compare React hooks patterns with Vue Composition API",
  thoughtNumber: 1,
  totalThoughts: 3,
  nextThoughtNeeded: true
});

return { documentation: reactDocs, analysis };

3. Knowledge Graph Building

// Fetch related entities
const company = await fetch(`https://api.example.com/companies/${id}`).then(r => r.json());

// Store as memory nodes
const companyMemory = await mcp.automem.store_memory({
  content: `Company: ${company.name} in ${company.industry}`,
  tags: ['company', company.industry]
});

// Create relationships
for (const product of company.products) {
  const productMemory = await mcp.automem.store_memory({
    content: `Product: ${product.name}`,
    tags: ['product']
  });

  await mcp.automem.associate_memories({
    memory1_id: companyMemory.memory_id,
    memory2_id: productMemory.memory_id,
    type: 'RELATES_TO',
    strength: 0.9
  });
}

return { graph_nodes: company.products.length + 1 };

🏗️ Architecture

Dual Service Design

┌─────────────────────────────────────────────────────────┐
│                  CodeMode Unified                       │
├─────────────────────┬───────────────────────────────────┤
│                     │                                   │
│   MCP Server        │        HTTP Backend               │
│   (stdio)           │        (port 3001)                │
│                     │                                   │
│   ├─ MCP Client     │   ├─ REST API                     │
│   ├─ Tool Bridge    │   ├─ WebSocket                    │
│   └─ Executor       │   └─ MCP Aggregator               │
│        │            │           │                       │
└────────┼────────────┴───────────┼───────────────────────┘
         │                        │
         └────────────┬───────────┘
                      ▼
         ┌──────────────────────────┐
         │   Runtime Executor       │
         ├──────────────────────────┤
         │  ├─ Bun Runtime          │
         │  ├─ QuickJS Runtime      │
         │  ├─ Deno Runtime         │
         │  ├─ Isolated-VM          │
         │  └─ E2B Runtime          │
         └──────────────────────────┘
                      │
         ┌────────────┴─────────────┐
         │                          │
         ▼                          ▼
    ┌─────────┐              ┌─────────────┐
    │   MCP   │              │  Standard   │
    │  Tools  │              │    APIs     │
    └─────────┘              └─────────────┘
    AutoMem                  fetch()
    Context7                 console
    Sequential               Date, JSON, etc

Key Components


🧪 Testing & Quality

Test Coverage

# Run all tests
npm test

# Test specific runtimes
npm run test:runtime:bun
npm run test:runtime:quickjs
npm run test:runtime:deno

# Coverage report
npm run test:coverage

🧪 Testing & Quality

Test Coverage

# Run all tests
npm test

# Test specific runtimes
npm run test:runtime:bun
npm run test:runtime:quickjs
npm run test:runtime:deno

# Coverage report
npm run test:coverage

Performance Benchmarks

Comprehensive benchmark suite available: examples/benchmarks/

# Quick comparison (Deno vs Bun)
PATH="/Users/$USER/.deno/bin:$PATH" node examples/benchmarks/compare-runtimes.js

# Full benchmark suite (3 runtimes, 20+ tests)
PATH="/Users/$USER/.deno/bin:$PATH" node examples/benchmarks/runtime-comparison.js

# Deno validation suite
PATH="/Users/$USER/.deno/bin:$PATH" node examples/benchmarks/test-deno-runtime.js

# Real-world workflow test
PATH="/Users/$USER/.deno/bin:$PATH" node examples/benchmarks/test-deno-pokemon.js

Benchmark Results (Actual Testing):

Test Type Deno Bun Winner
Simple Expression 21ms 74ms 🦕 Deno
Array Operations 19ms 10ms 🍞 Bun
Single Fetch 582ms 183ms 🍞 Bun
Parallel Fetches 353ms 152ms 🍞 Bun
Average 199ms 86ms 🍞 Bun (2.3x faster)

See examples/benchmarks/README.md for complete analysis.

Production Testing Results

6/6 Workflows Passed (100% success rate)

Tested Capabilities:

  • ✅ Multi-API data aggregation
  • ✅ Async/await with Promise.all
  • ✅ MCP tool integration (store, recall, associate)
  • ✅ Structured object returns
  • ✅ Knowledge graph creation
  • ✅ Error handling and recovery
  • ✅ Complex nested data structures
  • ✅ Real-world API interactions

Performance:

  • Execution Time: 150-300ms per workflow (Bun), 350-1400ms (Deno)
  • Memory Usage: <50MB per sandbox
  • Throughput: 1000+ requests/second (Bun), 500+ req/sec (Deno)

🎓 Key Features Explained

Multi-Runtime Support

Each runtime has different strengths:

Runtime Async NPM Packages Startup Best For
Bun ✅ Full ✅ Yes 50-100ms Production workflows
QuickJS ⚠️ Emulated ❌ No 5-10ms Quick computations
Deno ✅ Full ✅ Yes 100-200ms Secure execution
isolated-vm ✅ Full ⚠️ Limited 50-100ms Custom isolation
E2B ✅ Full ✅ Yes 1-5s Untrusted code

MCP Tool Access

All MCP tools are automatically namespaced and available:

// AutoMem (7 tools)
await mcp.automem.store_memory({...})
await mcp.automem.recall_memory({...})
await mcp.automem.associate_memories({...})
await mcp.automem.update_memory({...})
await mcp.automem.delete_memory({...})
await mcp.automem.search_memory_by_tag({...})
await mcp.automem.check_database_health()

// Context7 (2 tools)
await mcp.context7.resolve_library_id({...})
await mcp.context7.get_library_docs({...})

// Sequential Thinking (1 tool)
await mcp.sequential_thinking.sequentialthinking({...})

Structured Response Parsing

The system intelligently parses both structured and formatted responses:

// MCP tools might return formatted text or JSON
const result = await mcp.automem.recall_memory({query: 'test'});

// Automatically parsed to structured data:
// {
//   _text: "original formatted text",
//   memory_id: "abc123",
//   content: "stored content",
//   tags: "tag1, tag2"
// }

🐛 Bug Fixes & Known Issues

✅ Recently Fixed

  1. Return Statement Wrapping - Multi-line return statements now work correctly
  2. MCP Response Parsing - Handles both JSON and formatted text responses
  3. Config Loading - Properly maps mcpServers→servers format
  4. Process Cleanup - No zombie processes after restarts

⚠️ Known Limitations

  1. Context7 Parsing - Occasional inconsistencies with complex doc structures
  2. Tag-based Recall - Less reliable than query-based memory recall
  3. QuickJS Async - Two-pass system for async emulation (use Bun for real async)

📊 Performance Benchmarks

Execution Speed

Bun Runtime:        50-100ms startup + execution time
QuickJS Runtime:    5-10ms startup + execution time
Deno Runtime:       100-200ms startup + execution time

Throughput

Single-threaded:    1000+ req/sec
Worker pool (4):    3500+ req/sec
With MCP tools:     500+ req/sec (network-bound)

Memory Usage

Base runtime:       10-20MB
Per sandbox:        5-50MB (depending on code)
MCP connections:    5-10MB per server

🔐 Security Model

Sandbox Isolation

  • ✅ Memory limits enforced (default 128MB)
  • ✅ CPU quota restrictions (default 50%)
  • ✅ Execution timeout (default 30s)
  • ✅ Network access control
  • ✅ Filesystem isolation

Authentication Options

  • JWT with HS256/RS256
  • OAuth 2.1 with PKCE
  • API key authentication
  • Capability-based permissions

Audit Logging

All code execution is logged with:

  • Timestamp and user identity
  • Code executed (sanitized)
  • Runtime and resources used
  • MCP tools accessed
  • Success/failure status

📚 Documentation


🤝 Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Add tests for new functionality
  4. Ensure npm run typecheck passes
  5. Submit a pull request

📝 License

MIT License - see LICENSE file for details.


🙏 Acknowledgments

Built with:


📞 Support


Built with ❤️ for the AI agent ecosystem

About

Local-first Code Mode implementation with protocol-agnostic support for MCP, OpenAPI, and native tools

Resources

Stars

Watchers

Forks

Packages

No packages published