Converting LangGraph_quickstart into custom safety-agent
User question
↓
Intent detection (is this a statistical question?)
↓
If yes → run structured query (e.g., Pandas / SQL / Smartsheet API filter)
If no → normal RAG (semantic retrieval + LLM summarization)
↓
Combine the outputs
↓
LLM formats the result conversationally
User question ↓ 🧠 Intent detection (statistical vs semantic) ↓ 📊 Statistical Path: 🔍 Semantic Path:
- Azure Blob Storage - Azure AI Search
- Load 12,390 incidents - Vector store query
- LLM generates Python code - Retrieve relevant docs
- Execute Pandas analysis - LLM summarization ↓ ↓ 🤖 LLM formats result conversationally ↓ 🌐 Stream to web interface with chain of thought
- Pipeline exists to extract Smartsheet data
- Smartsheet data loaded into Azure AI search for the RAG vector store and blob storage csv file for Pandas statistical analysiss
- Start developing with a static query, do not develop front end UI
- Output result in the terminal