Skip to content

Bug in initializers init_from_dict() #63

@RaulMurillo

Description

@RaulMurillo

System information

  • OS Platform and Distribution: Linux Ubuntu 18.04
  • Python version: 3.6.9
  • NumPy version: 1.19.5

Describe the current behavior
When calling the init_from_dict() method from numpy_ml/neural_nets/initializers, from both SchedulerInitializer and OptimizerInitializer classes, the returned object is None, rather than a propper object.
This is caused by the assignation of the set_params() method to the returned object. Such a method does not return an object but modifies the instance itself.

def init_from_dict(self):
O = self.param
cc = O["cache"] if "cache" in O else None
op = O["hyperparameters"] if "hyperparameters" in O else None
if op is None:
raise ValueError("Must have `hyperparemeters` key: {}".format(O))
if op and op["id"] == "SGD":
optimizer = SGD().set_params(op, cc)
elif op and op["id"] == "RMSProp":
optimizer = RMSProp().set_params(op, cc)
elif op and op["id"] == "AdaGrad":
optimizer = AdaGrad().set_params(op, cc)
elif op and op["id"] == "Adam":
optimizer = Adam().set_params(op, cc)
elif op:
raise NotImplementedError("{}".format(op["id"]))
return optimizer

Describe the expected behavior
init_from_dict() should return a propper object that will be assigned to an attribute of a NN layer.

Code to reproduce the issue

from numpy_ml.neural_nets.layers import *

c1 = Conv2D(6, (3,3))
opt = c1.hyperparameters['optimizer'] # dict

c2=Conv2D(6, (3,3), optimizer=opt) # The optimizer is set to None
c2.hyperparameters

This raises AttributeError: 'NoneType' object has no attribute 'cache'.
The same happens with Scheduler.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions