Smart Paid Mess Credits Planner & Decision Support System
UNMESSIFY is a web-based decision support application that helps students optimize their paid mess credit usage through data-driven insights, predictive analytics, and actionable recommendations.
Students on paid mess plans receive ~₹6,000–₹6,500 credits monthly. Without proper tracking:
- Credits often run out before month-end
- Students must pay real money for remaining days
- Longer queues and reduced food availability
UNMESSIFY solves this by converting raw spending data into predictive insights and actionable recommendations.
| Feature | Description |
|---|---|
| Adaptive Daily Safe Limit | Dynamic calculation based on remaining credits, burn rate, and risk tolerance |
| Multi-Window Burn Rate | Overall, 7-day, and 3-day burn rate analysis |
| Predictive Engine | Credit exhaustion date prediction with confidence levels |
| Rule-Based Advice | 9 transparent, explainable recommendation rules |
| Visual Analytics | Interactive Chart.js visualizations |
| Risk Indicators | Color-coded status (Safe/Watch/Danger) |
| LocalStorage Persistence | Data persists across sessions |
| Export/Import | Backup and restore your data as JSON |
┌─────────────────────────────────────────────────────────────┐
│ UNMESSIFY │
├─────────────────────────────────────────────────────────────┤
│ UI Layer (index.html + styles.css) │
│ ├── Header with Status Strip │
│ ├── Dashboard (3-column layout) │
│ ├── Tabbed Forms (Setup, Expense, Preferences) │
│ └── History Section │
├─────────────────────────────────────────────────────────────┤
│ Logic Layer (app.js) │
│ ├── Data Models (UserProfile, ExpenseEntry, DerivedData) │
│ ├── Calculation Engine (Burn Rate, Safe Limit, Predictions)│
│ └── Advice Engine (9 Rule-Based Recommendations) │
├─────────────────────────────────────────────────────────────┤
│ Visualization Layer (charts.js) │
│ ├── Daily Spending Trend (Line Chart) │
│ ├── Category Breakdown (Donut Chart) │
│ └── Credit Depletion (Area Chart) │
├─────────────────────────────────────────────────────────────┤
│ Storage Layer (LocalStorage) │
│ └── unmessify_state_v1 │
└─────────────────────────────────────────────────────────────┘
{
userType: "hostel_student" | "day_scholar",
monthlyCredits: number, // e.g., 6000
monthDays: number, // e.g., 30
startDate: "YYYY-MM-DD",
preferences: {
riskTolerance: "low" | "medium" | "high",
weekendBoost: boolean,
examMode: boolean,
maxSpendPerDay: number | null,
vegetarian: boolean,
notificationThresholds: { warning: 0.7, danger: 0.9 }
}
}{
id: string, // UUID
date: "YYYY-MM-DD",
mealType: "breakfast" | "lunch" | "snacks" | "dinner" | "other",
itemType: "chicken" | "paneer" | "veg" | "dessert" | "beverage" | "other",
quantity: number,
cost: number,
notes: string | null
}base = remainingCredits / remainingDays
adjusted = base / √(overshootRatio) // if spending > ideal
final = adjusted × toleranceFactor × modeBoosts
- Overall: totalSpent / daysElapsed
- 7-Day: Last 7 days average (primary for predictions)
- 3-Day: Recent trend detection
- Safe: Credits usage ≤ time elapsed + 5%
- Watch: Usage 5-15% ahead of schedule
- Danger: Usage >15% ahead OR exhaustion before month-end
| Form | Fields | Validation |
|---|---|---|
| Credit Setup | Monthly credits, days, start date, user type | Credits: ₹3,000-₹10,000; Days: 28-31 |
| Expense Entry | Date, meal, item type, quantity, cost | Date within month, not future; Cost: ₹1-₹2,000 |
| Preferences | Risk tolerance, daily cap, modes, thresholds | Logical bounds, live preview |
- Clone or download this repository
- Open
index.htmlin any modern browser - Set up your profile with monthly credits and start date
- Add expenses as you make purchases
- Monitor dashboard for insights and recommendations
No build process or server required!
- Chrome 80+
- Firefox 75+
- Safari 13+
- Edge 80+
- Chart.js v4.x (loaded via CDN)
- Inter Font (Google Fonts)
- JetBrains Mono (Google Fonts)
- Meal Recommendation
- Mess menu API integration
- Browser push notifications for risk changes
- Nutrition tracking and analysis
- ML-based anomaly detection
- Mobile app (React Native / Flutter)
- Multi-month trend analysis
MIT License
Made with ❤️ for mess-going students everywhere





