A Tensorflow 2.0 implementation of Adversarial Autoencoder (ICLR 2016)
| Target prior distribution | Learnt latent space | Sampled decoder ouput |
|---|---|---|
![]() |
![]() |
![]() |
| Input images | Reconstructed images |
|---|---|
![]() |
![]() |
| Gan | Encoder | Discriminator |
|---|---|---|
![]() |
![]() |
![]() |
python train_model.py --prior_type gaussian_mixture
--prior_type: Type of target prior distribution. Default:gaussian_mixture. Required.--results_dir: Training visualization directory. Default:results. Created if non-existent.--log_dir: Log directory (Tensorboard). Default:logs. Created if non-existent.--gm_x_stddev: Gaussian mixture prior: standard deviation for the x coord. Default:0.5--gm_y_stddev: Gaussian mixture prior: standard deviation for the y coord. Default:0.1--n_epochs: Number of epochs. Default:20--learning_rate: Learning rate. Default:0.001--batch_size: Batch size. Default:128--num_classes: Number of classes (for further use). Default:10
Visualization of outliers from learnt distribution in the latent space









