Skip to content

An MCP server that executes Python code in isolated rootless containers with optional MCP server proxying. Implementation of Anthropic's and Cloudflare's ideas for reducing MCP tool definitions context bloat.

License

Notifications You must be signed in to change notification settings

elusznik/mcp-server-code-execution-mode

Repository files navigation

MCP Server Code Execution Mode

An MCP server that executes Python code in isolated rootless containers with optional MCP server proxying.

Anthropic Engineering Cloudflare Blog MCP Protocol

Overview

This bridge implements the "Code Execution with MCP" pattern—a revolutionary approach to using Model Context Protocol tools. Instead of exposing all MCP tools directly to Claude (consuming massive context), the bridge:

  1. Auto-discovers configured MCP servers
  2. Proxies tools into sandboxed code execution
  3. Eliminates context overhead (95%+ reduction)
  4. Enables complex workflows through Python code

Key Features

🔒 Security First

  • Rootless containers - No privileged helpers required
  • Network isolation - No network access
  • Read-only filesystem - Immutable root
  • Dropped capabilities - No system access
  • Unprivileged user - Runs as UID 65534
  • Resource limits - Memory, PIDs, CPU, time
  • Auto-cleanup - Temporary IPC directories

⚡ Performance

  • Persistent clients - MCP servers stay warm
  • Context efficiency - 95%+ reduction vs traditional MCP
  • Async execution - Proper resource management
  • Single tool - Only run_python in Claude's context

🔧 Developer Experience

  • Multiple access patterns:
    mcp_servers["server"]           # Dynamic lookup
    mcp_server_name                 # Attribute access
    from mcp.servers.server import * # Module import
  • Top-level await - Modern Python patterns
  • Type-safe - Proper signatures and docs
  • TOON responses - Tool outputs are emitted as TOON code blocks for token-efficient prompting

TOON Response Format

  • We encode every MCP bridge response using Token-Oriented Object Notation (TOON).
  • TOON collapses repetitive JSON keys and emits newline-aware arrays, trimming token counts 30-60% for uniform tables so LLM bills stay lower.
  • Clients that expect plain JSON can still recover the structured payload: the TOON code block includes the same fields (status, stdout, stderr, etc.) and we fall back to JSON automatically if the encoder is unavailable.

Quick Start

1. Prerequisites (macOS or Linux)

  • Install a rootless container runtime (Podman or Docker).
    • macOS: brew install podman or brew install --cask docker
    • Ubuntu/Debian: sudo apt-get install -y podman or curl -fsSL https://get.docker.com | sh
  • Install uv to manage this project:
    curl -LsSf https://astral.sh/uv/install.sh | sh
  • Pull a Python base image once your runtime is ready:
    podman pull python:3.12-slim
    # or
    docker pull python:3.12-slim

2. Install Dependencies

Use uv to sync the project environment:

uv sync

3. Launch Bridge

uv run python mcp_server_code_execution_mode.py

4. Register with Claude Code

File: ~/.config/mcp/servers/mcp-server-code-execution-mode.json

{
  "mcpServers": {
    "mcp-server-code-execution-mode": {
      "command": "uv",
      "args": ["run", "python", "/absolute/path/to/mcp_server_code_execution_mode.py"],
      "env": {
        "MCP_BRIDGE_RUNTIME": "podman"
      }
    }
  }
}

Restart Claude Code

5. Execute Code

# Use MCP tools in sandboxed code
result = await mcp_filesystem.read_file(path='/tmp/test.txt')

# Complex workflows
data = await mcp_search.search(query="TODO")
await mcp_github.create_issue(repo='owner/repo', title=data.title)

Architecture

┌─────────────┐
│ MCP Client  │ (Claude Code)
└──────┬──────┘
       │ stdio
       ▼
┌──────────────┐
│ MCP Code Exec │ ← Discovers, proxies, manages
│ Bridge        │
└──────┬──────┘
       │ container
       ▼
┌─────────────┐
│ Container   │ ← Executes with strict isolation
│ Sandbox     │
└─────────────┘

Process:

  1. Client calls run_python(code, servers, timeout)
  2. Bridge loads requested MCP servers
  3. Prepares a sandbox invocation: collects MCP tool metadata, writes an entrypoint into a shared /ipc volume, and exports MCP_AVAILABLE_SERVERS
  4. Generated entrypoint rewires stdio into JSON-framed messages and proxies MCP calls over the container's stdin/stdout pipe
  5. Runs container with security constraints
  6. Host stream handler processes JSON frames, forwards MCP traffic, enforces timeouts, and cleans up

Configuration

Environment Variables

Variable Default Description
MCP_BRIDGE_RUNTIME auto Container runtime (podman/docker)
MCP_BRIDGE_IMAGE python:3.12-slim Container image
MCP_BRIDGE_TIMEOUT 30s Default timeout
MCP_BRIDGE_MAX_TIMEOUT 120s Max timeout
MCP_BRIDGE_MEMORY 512m Memory limit
MCP_BRIDGE_PIDS 128 Process limit
MCP_BRIDGE_CPUS - CPU limit
MCP_BRIDGE_CONTAINER_USER 65534:65534 Run as UID:GID
MCP_BRIDGE_RUNTIME_IDLE_TIMEOUT 300s Shutdown delay
MCP_BRIDGE_STATE_DIR ./.mcp-bridge Host directory for IPC sockets and temp state

Server Discovery

Scanned Locations:

  • ~/.claude.json
  • ~/Library/Application Support/Claude Code/claude_code_config.json
  • ~/Library/Application Support/Claude/claude_code_config.json (early Claude Code builds)
  • ~/Library/Application Support/Claude/claude_desktop_config.json (Claude Desktop fallback)
  • ~/.config/mcp/servers/*.json
  • ./claude_code_config.json
  • ./claude_desktop_config.json (project-local fallback)
  • ./mcp-servers/*.json

Example Server (~/.config/mcp/servers/filesystem.json):

{
  "mcpServers": {
    "filesystem": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-filesystem", "/tmp"]
    }
  }
}

Docker MCP Gateway Integration

When you rely on docker mcp gateway run to expose third-party MCP servers, the bridge simply executes the gateway binary. The gateway is responsible for pulling tool images and wiring stdio transports, so make sure the host environment is ready:

  • Run docker login for every registry referenced in the gateway catalog (e.g. Docker Hub mcp/* images, ghcr.io/github/github-mcp-server). Without cached credentials the pull step fails before any tools come online.
  • Provide required secrets for those servers—github-official needs github.personal_access_token, others may expect API keys or auth tokens. Use docker mcp secret set <name> (or whichever mechanism your gateway is configured with) so the container sees the values at start-up.
  • Mirror any volume mounts or environment variables that the catalog expects (filesystem paths, storage volumes, etc.). Missing mounts or credentials commonly surface as failed to connect: calling "initialize": EOF during the stdio handshake.
  • If list_tools only returns the internal management helpers (mcp-add, code-mode, …), the gateway never finished initializing the external servers—check the gateway logs for missing secrets or registry access errors.

State Directory & Volume Sharing

  • Runtime artifacts (including the generated /ipc/entrypoint.py and related handshake metadata) live under ./.mcp-bridge/ by default. Set MCP_BRIDGE_STATE_DIR to relocate them.
  • When the selected runtime is Podman, the bridge automatically issues podman machine set --rootful --now --volume <state_dir>:<state_dir> so the VM can mount the directory.
  • Docker Desktop does not expose a CLI for file sharing; ensure the chosen state directory is marked as shared in Docker Desktop → Settings → Resources → File Sharing before running the bridge.
  • To verify a share manually, run docker run --rm -v $PWD/.mcp-bridge:/ipc alpine ls /ipc (or the Podman equivalent) and confirm the files are visible.

Usage Examples

File Processing

# List and filter files
files = await mcp_filesystem.list_directory(path='/tmp')

for file in files:
    content = await mcp_filesystem.read_file(path=file)
    if 'TODO' in content:
        print(f"TODO in {file}")

Data Pipeline

# Extract data
transcript = await mcp_google_drive.get_document(documentId='abc123')

# Process
summary = transcript[:500] + "..."

# Store
await mcp_salesforce.update_record(
    objectType='SalesMeeting',
    recordId='00Q5f000001abcXYZ',
    data={'Notes': summary}
)

Multi-System Workflow

# Jira → GitHub migration
issues = await mcp_jira.search_issues(project='API', status='Open')

for issue in issues:
    details = await mcp_jira.get_issue(id=issue.id)

    if 'bug' in details.description.lower():
        await mcp_github.create_issue(
            repo='owner/repo',
            title=f"Bug: {issue.title}",
            body=details.description
        )

Inspect Available Servers

from mcp import runtime

print("Discovered:", runtime.discovered_servers())
print("Loaded metadata:", runtime.list_loaded_server_metadata())
print("Selectable via RPC:", await runtime.list_servers())

# Peek at tool docs for a server that's already loaded in this run
loaded = runtime.list_loaded_server_metadata()
if loaded:
  first = runtime.describe_server(loaded[0]["name"])
  for tool in first["tools"]:
    print(tool["alias"], "→", tool.get("description", ""))

Example output seen by the LLM when running the snippet above with the stub server:

Discovered: ('stub',)
Loaded metadata: ({'name': 'stub', 'alias': 'stub', 'tools': [{'name': 'echo', 'alias': 'echo', 'description': 'Echo the provided message', 'input_schema': {...}}]},)
Selectable via RPC: ('stub',)

Security

Container Constraints

Constraint Setting Purpose
Network --network none No external access
Filesystem --read-only Immutable base
Capabilities --cap-drop ALL No system access
Privileges no-new-privileges No escalation
User 65534:65534 Unprivileged
Memory --memory 512m Resource cap
PIDs --pids-limit 128 Process cap
Workspace tmpfs, noexec Safe temp storage

Capabilities Matrix

Action Allowed Details
Import stdlib Python standard library
Access MCP tools Via proxies
Memory ops Process data
Write to disk Only /tmp, /workspace
Network Completely blocked
Host access No system calls
Privilege escalation Prevented by sandbox
Container escape Rootless + isolation

Documentation

Resources

External

Status

✅ Implemented

  • Rootless container sandbox
  • Single run_python tool
  • MCP server proxying
  • Persistent clients
  • Comprehensive docs

🔄 In Progress

  • Automated testing
  • Observability (logging, metrics)
  • Policy controls
  • Runtime diagnostics

📋 Roadmap

  • Connection pooling
  • Web UI
  • Multi-language support
  • Workflow orchestration

License

GPLv3 License

Support

For issues or questions, see the documentation or file an issue.

About

An MCP server that executes Python code in isolated rootless containers with optional MCP server proxying. Implementation of Anthropic's and Cloudflare's ideas for reducing MCP tool definitions context bloat.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages