-
Notifications
You must be signed in to change notification settings - Fork 356
Closed
Labels
upstream issueResolution depends on upstream fixesResolution depends on upstream fixes
Description
When I download the code from https://ax.dev/tutorials/saasbo.html and run it on Google Colab with GPU, I get the following error message:
RuntimeError Traceback (most recent call last)
[<ipython-input-21-fb6ba87452b0>](https://localhost:8080/#) in <module>
24 torch_dtype=tkwargs["dtype"],
25 verbose=True, # Set to True to print stats from MCMC
---> 26 disable_progbar=True, # Set to False to print a progress bar from MCMC
27 )
28 generator_run = model.gen(BATCH_SIZE)
20 frames
[/usr/local/lib/python3.7/dist-packages/pyro/infer/mcmc/util.py](https://localhost:8080/#) in _potential_fn_jit(self, skip_jit_warnings, jit_options, params)
292
293 if self._compiled_fn:
--> 294 return self._compiled_fn(*vals)
295
296 with pyro.validation_enabled(False):
RuntimeError: The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
RuntimeError: Graph::copy() encountered a use of a value 133 not in scope. Run lint!
when running this code cell:
# Experiment
experiment = Experiment(
name="saasbo_experiment",
search_space=search_space,
optimization_config=optimization_config,
runner=SyntheticRunner(),
)
# Initial Sobol points
sobol = Models.SOBOL(search_space=experiment.search_space)
for _ in range(N_INIT):
experiment.new_trial(sobol.gen(1)).run()
# Run SAASBO
data = experiment.fetch_data()
for i in range(N_BATCHES):
model = Models.FULLYBAYESIAN(
experiment=experiment,
data=data,
num_samples=256, # Increasing this may result in better model fits
warmup_steps=512, # Increasing this may result in better model fits
gp_kernel="rbf", # "rbf" is the default in the paper, but we also support "matern"
torch_device=tkwargs["device"],
torch_dtype=tkwargs["dtype"],
verbose=True, # Set to True to print stats from MCMC
disable_progbar=True, # Set to False to print a progress bar from MCMC
)
generator_run = model.gen(BATCH_SIZE)
trial = experiment.new_batch_trial(generator_run=generator_run)
trial.run()
data = Data.from_multiple_data([data, trial.fetch_data()])
new_value = trial.fetch_data().df["mean"].min()
print(f"Iteration: {i}, Best in iteration {new_value:.3f}, Best so far: {data.df['mean'].min():.3f}")
This only happens when I use CUDA. When I change device to CPU it works fine. The same error occurs on our internal Cluster with an NVIDIA A40 GPU.
BTW: The same error occurs when I use the BoTorch example here: https://botorch.org/tutorials/saasbo Given they use the same libraries that makes perfect sense.
Any help is greatly appreciated! Thanks!
Nicolas
Metadata
Metadata
Assignees
Labels
upstream issueResolution depends on upstream fixesResolution depends on upstream fixes