-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Extend WriteMetricsTransform in Ingestion to write feature value stats to StatsD #486
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
feast-ci-bot
merged 6 commits into
feast-dev:master
from
davidheryanto:feast-ingestion-feature-value-metric
Feb 25, 2020
Merged
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
a87eee2
Extend WriteMetricsTransform to write feature value stats to StatsD
davidheryanto de32292
Apply mvn spotless
davidheryanto ed268eb
Catch all exception not just StatsDClientException during init
davidheryanto 028b5eb
Change log level due to invalid feature set ref to error (previously …
davidheryanto 413e569
Merge branch 'master' into feast-ingestion-feature-value-metric
davidheryanto 0bbdfeb
Apply maven spotless to metric transform codes
davidheryanto File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
311 changes: 311 additions & 0 deletions
311
ingestion/src/main/java/feast/ingestion/transform/metrics/WriteFeatureValueMetricsDoFn.java
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,311 @@ | ||
| /* | ||
| * SPDX-License-Identifier: Apache-2.0 | ||
| * Copyright 2018-2020 The Feast Authors | ||
| * | ||
| * Licensed under the Apache License, Version 2.0 (the "License"); | ||
| * you may not use this file except in compliance with the License. | ||
| * You may obtain a copy of the License at | ||
| * | ||
| * https://www.apache.org/licenses/LICENSE-2.0 | ||
| * | ||
| * Unless required by applicable law or agreed to in writing, software | ||
| * distributed under the License is distributed on an "AS IS" BASIS, | ||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| * See the License for the specific language governing permissions and | ||
| * limitations under the License. | ||
| */ | ||
| package feast.ingestion.transform.metrics; | ||
|
|
||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.FEATURE_SET_NAME_TAG_KEY; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.FEATURE_SET_PROJECT_TAG_KEY; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.FEATURE_SET_VERSION_TAG_KEY; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.FEATURE_TAG_KEY; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.INGESTION_JOB_NAME_KEY; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.METRIC_PREFIX; | ||
| import static feast.ingestion.transform.metrics.WriteRowMetricsDoFn.STORE_TAG_KEY; | ||
|
|
||
| import com.google.auto.value.AutoValue; | ||
| import com.timgroup.statsd.NonBlockingStatsDClient; | ||
| import com.timgroup.statsd.StatsDClient; | ||
| import feast.types.FeatureRowProto.FeatureRow; | ||
| import feast.types.FieldProto.Field; | ||
| import feast.types.ValueProto.Value; | ||
| import java.util.ArrayList; | ||
| import java.util.DoubleSummaryStatistics; | ||
| import java.util.HashMap; | ||
| import java.util.List; | ||
| import java.util.Map; | ||
| import java.util.Map.Entry; | ||
| import org.apache.beam.sdk.transforms.DoFn; | ||
| import org.apache.beam.sdk.values.KV; | ||
| import org.apache.commons.math3.stat.descriptive.rank.Percentile; | ||
| import org.slf4j.Logger; | ||
|
|
||
| /** | ||
| * WriteFeatureValueMetricsDoFn accepts key value of FeatureSetRef(str) to FeatureRow(List) and | ||
| * writes a histogram of the numerical values of each feature to StatsD. | ||
| * | ||
| * <p>The histogram of the numerical values is represented as the following in StatsD: | ||
| * | ||
| * <ul> | ||
| * <li>gauge of feature_value_min | ||
| * <li>gauge of feature_value_max | ||
| * <li>gauge of feature_value_mean | ||
| * <li>gauge of feature_value_percentile_50 | ||
| * <li>gauge of feature_value_percentile_90 | ||
| * <li>gauge of feature_value_percentile_95 | ||
| * </ul> | ||
| * | ||
| * <p>StatsD timing/histogram metric type is not used since it does not support negative values. | ||
| */ | ||
| @AutoValue | ||
| public abstract class WriteFeatureValueMetricsDoFn | ||
| extends DoFn<KV<String, Iterable<FeatureRow>>, Void> { | ||
|
|
||
| abstract String getStoreName(); | ||
|
|
||
| abstract String getStatsdHost(); | ||
|
|
||
| abstract int getStatsdPort(); | ||
|
|
||
| static Builder newBuilder() { | ||
| return new AutoValue_WriteFeatureValueMetricsDoFn.Builder(); | ||
| } | ||
|
|
||
| @AutoValue.Builder | ||
| abstract static class Builder { | ||
|
|
||
| abstract Builder setStoreName(String storeName); | ||
|
|
||
| abstract Builder setStatsdHost(String statsdHost); | ||
|
|
||
| abstract Builder setStatsdPort(int statsdPort); | ||
|
|
||
| abstract WriteFeatureValueMetricsDoFn build(); | ||
| } | ||
|
|
||
| private static final Logger log = | ||
| org.slf4j.LoggerFactory.getLogger(WriteFeatureValueMetricsDoFn.class); | ||
| private StatsDClient statsDClient; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_MIN = "feature_value_min"; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_MAX = "feature_value_max"; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_MEAN = "feature_value_mean"; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_PERCENTILE_50 = "feature_value_percentile_50"; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_PERCENTILE_90 = "feature_value_percentile_90"; | ||
| public static String GAUGE_NAME_FEATURE_VALUE_PERCENTILE_95 = "feature_value_percentile_95"; | ||
|
|
||
| @Setup | ||
| public void setup() { | ||
| // Note that exception may be thrown during StatsD client instantiation but no exception | ||
| // will be thrown when sending metrics (mimicking the UDP protocol behaviour). | ||
| // https://jar-download.com/artifacts/com.datadoghq/java-dogstatsd-client/2.1.1/documentation | ||
| // https://github.com/DataDog/java-dogstatsd-client#unix-domain-socket-support | ||
| try { | ||
| statsDClient = new NonBlockingStatsDClient(METRIC_PREFIX, getStatsdHost(), getStatsdPort()); | ||
| } catch (Exception e) { | ||
| log.error("StatsD client cannot be started: " + e.getMessage()); | ||
| } | ||
| } | ||
|
|
||
| @Teardown | ||
| public void tearDown() { | ||
| if (statsDClient != null) { | ||
| statsDClient.close(); | ||
| } | ||
| } | ||
|
|
||
| @ProcessElement | ||
| public void processElement( | ||
| ProcessContext context, | ||
| @Element KV<String, Iterable<FeatureRow>> featureSetRefToFeatureRows) { | ||
| if (statsDClient == null) { | ||
| return; | ||
woop marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
|
|
||
| String featureSetRef = featureSetRefToFeatureRows.getKey(); | ||
woop marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| if (featureSetRef == null) { | ||
| return; | ||
| } | ||
| String[] colonSplits = featureSetRef.split(":"); | ||
| if (colonSplits.length != 2) { | ||
| log.error( | ||
| "Skip writing feature value metrics because the feature set reference '{}' does not" | ||
| + "follow the required format <project>/<feature_set_name>:<version>", | ||
| featureSetRef); | ||
| return; | ||
| } | ||
| String[] slashSplits = colonSplits[0].split("/"); | ||
| if (slashSplits.length != 2) { | ||
| log.error( | ||
| "Skip writing feature value metrics because the feature set reference '{}' does not" | ||
| + "follow the required format <project>/<feature_set_name>:<version>", | ||
| featureSetRef); | ||
| return; | ||
| } | ||
| String projectName = slashSplits[0]; | ||
| String featureSetName = slashSplits[1]; | ||
| String version = colonSplits[1]; | ||
|
|
||
| Map<String, DoubleSummaryStatistics> featureNameToStats = new HashMap<>(); | ||
| Map<String, List<Double>> featureNameToValues = new HashMap<>(); | ||
| for (FeatureRow featureRow : featureSetRefToFeatureRows.getValue()) { | ||
| for (Field field : featureRow.getFieldsList()) { | ||
| updateStats(featureNameToStats, featureNameToValues, field); | ||
| } | ||
| } | ||
|
|
||
| for (Entry<String, DoubleSummaryStatistics> entry : featureNameToStats.entrySet()) { | ||
| String featureName = entry.getKey(); | ||
| DoubleSummaryStatistics stats = entry.getValue(); | ||
| String[] tags = { | ||
| STORE_TAG_KEY + ":" + getStoreName(), | ||
| FEATURE_SET_PROJECT_TAG_KEY + ":" + projectName, | ||
| FEATURE_SET_NAME_TAG_KEY + ":" + featureSetName, | ||
| FEATURE_SET_VERSION_TAG_KEY + ":" + version, | ||
| FEATURE_TAG_KEY + ":" + featureName, | ||
| INGESTION_JOB_NAME_KEY + ":" + context.getPipelineOptions().getJobName() | ||
| }; | ||
|
|
||
| // stats can return non finite values when there is no element | ||
| // or there is an element that is not a number. Metric should only be sent for finite values. | ||
| if (Double.isFinite(stats.getMin())) { | ||
| if (stats.getMin() < 0) { | ||
| // StatsD gauge will asssign a delta instead of the actual value, if there is a sign in | ||
| // the value. E.g. if the value is negative, a delta will be assigned. For this reason, | ||
| // the gauge value is set to zero beforehand. | ||
| // https://github.com/statsd/statsd/blob/master/docs/metric_types.md#gauges | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MIN, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MIN, stats.getMin(), tags); | ||
| } | ||
| if (Double.isFinite(stats.getMax())) { | ||
| if (stats.getMax() < 0) { | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MAX, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MAX, stats.getMax(), tags); | ||
| } | ||
| if (Double.isFinite(stats.getAverage())) { | ||
| if (stats.getAverage() < 0) { | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MEAN, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_MEAN, stats.getAverage(), tags); | ||
| } | ||
|
|
||
| // For percentile calculation, Percentile class from commons-math3 from Apache is used. | ||
| // Percentile requires double[], hence the conversion below. | ||
| if (!featureNameToValues.containsKey(featureName)) { | ||
| continue; | ||
| } | ||
| List<Double> valueList = featureNameToValues.get(featureName); | ||
| if (valueList == null || valueList.size() < 1) { | ||
| continue; | ||
| } | ||
| double[] values = new double[valueList.size()]; | ||
| for (int i = 0; i < values.length; i++) { | ||
| values[i] = valueList.get(i); | ||
| } | ||
|
|
||
| double p50 = new Percentile().evaluate(values, 50); | ||
| if (p50 < 0) { | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_50, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_50, p50, tags); | ||
|
|
||
| double p90 = new Percentile().evaluate(values, 90); | ||
| if (p90 < 0) { | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_90, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_90, p90, tags); | ||
|
|
||
| double p95 = new Percentile().evaluate(values, 95); | ||
| if (p95 < 0) { | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_95, 0, tags); | ||
| } | ||
| statsDClient.gauge(GAUGE_NAME_FEATURE_VALUE_PERCENTILE_95, p95, tags); | ||
| } | ||
| } | ||
|
|
||
| // Update stats and values array for the feature represented by the field. | ||
| // If the field contains non-numerical or non-boolean value, the stats and values array | ||
| // won't get updated because we are only concerned with numerical value in metrics data. | ||
| // For boolean value, true and false are treated as numerical value of 1 of 0 respectively. | ||
| private void updateStats( | ||
| Map<String, DoubleSummaryStatistics> featureNameToStats, | ||
| Map<String, List<Double>> featureNameToValues, | ||
| Field field) { | ||
| if (featureNameToStats == null || featureNameToValues == null || field == null) { | ||
| return; | ||
| } | ||
|
|
||
| String featureName = field.getName(); | ||
| if (!featureNameToStats.containsKey(featureName)) { | ||
| featureNameToStats.put(featureName, new DoubleSummaryStatistics()); | ||
| } | ||
| if (!featureNameToValues.containsKey(featureName)) { | ||
| featureNameToValues.put(featureName, new ArrayList<>()); | ||
| } | ||
|
|
||
| Value value = field.getValue(); | ||
| DoubleSummaryStatistics stats = featureNameToStats.get(featureName); | ||
| List<Double> values = featureNameToValues.get(featureName); | ||
|
|
||
| switch (value.getValCase()) { | ||
| case INT32_VAL: | ||
| stats.accept(value.getInt32Val()); | ||
| values.add(((double) value.getInt32Val())); | ||
| break; | ||
| case INT64_VAL: | ||
| stats.accept(value.getInt64Val()); | ||
| values.add((double) value.getInt64Val()); | ||
| break; | ||
| case DOUBLE_VAL: | ||
| stats.accept(value.getDoubleVal()); | ||
| values.add(value.getDoubleVal()); | ||
| break; | ||
| case FLOAT_VAL: | ||
| stats.accept(value.getFloatVal()); | ||
| values.add((double) value.getFloatVal()); | ||
| break; | ||
| case BOOL_VAL: | ||
| stats.accept(value.getBoolVal() ? 1 : 0); | ||
| values.add(value.getBoolVal() ? 1d : 0d); | ||
| break; | ||
| case INT32_LIST_VAL: | ||
| for (Integer val : value.getInt32ListVal().getValList()) { | ||
| stats.accept(val); | ||
| values.add(((double) val)); | ||
| } | ||
| break; | ||
| case INT64_LIST_VAL: | ||
| for (Long val : value.getInt64ListVal().getValList()) { | ||
| stats.accept(val); | ||
| values.add(((double) val)); | ||
| } | ||
| break; | ||
| case DOUBLE_LIST_VAL: | ||
| for (Double val : value.getDoubleListVal().getValList()) { | ||
| stats.accept(val); | ||
| values.add(val); | ||
| } | ||
| break; | ||
| case FLOAT_LIST_VAL: | ||
| for (Float val : value.getFloatListVal().getValList()) { | ||
| stats.accept(val); | ||
| values.add(((double) val)); | ||
| } | ||
| break; | ||
| case BOOL_LIST_VAL: | ||
| for (Boolean val : value.getBoolListVal().getValList()) { | ||
| stats.accept(val ? 1 : 0); | ||
| values.add(val ? 1d : 0d); | ||
| } | ||
| break; | ||
| case BYTES_VAL: | ||
| case BYTES_LIST_VAL: | ||
| case STRING_VAL: | ||
| case STRING_LIST_VAL: | ||
| case VAL_NOT_SET: | ||
woop marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| default: | ||
| } | ||
| } | ||
| } | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.