Skip to content

francescapia/GeMM-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

14 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

GeMM-GAN

GeMM-GAN: A Multimodal Generative Model Conditioned on Histopathology Images and Clinical Descriptions for Gene Expression Profile Generation

This repository contains the official PyTorch implementation of GeMM-GAN, a multimodal WGAN-GP framework that generates realistic gene expression profiles conditioned on histopathology image patches and clinical descriptions.

๐Ÿ“„ Paper: Accepted at ICIAP 2025
๐Ÿ‘ฉโ€๐Ÿ’ป Authors: Francesca Pia Panaccione, Carlo Sgaravatti, Pietro Pinoli
๐Ÿ“š Dataset: TCGA โ€“ The Cancer Genome Atlas
๐Ÿ“ฆ Frameworks: PyTorch, Hugging Face Transformers


๐Ÿง  Overview

GeMM-GAN leverages:

  • A pretrained Vision Transformer (UNI) for histopathology image patches
  • A clinical language model (Clinical ModernBERT) for patient metadata
  • A Multimodal Fusion module with FiLM and Cross-Attention
  • A Wasserstein GAN with Gradient Penalty (WGAN-GP) for transcriptomic profile generation

Model Architecture

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages