Skip to content

Eval bug: The vl_high_resolution_images parameter of qwen3-vl-4B is not taking effect. #17345

@sxch775-work

Description

@sxch775-work

Name and Version

llama server llama-b7079-bin-win-cpu-x64

Operating systems

Windows

GGML backends

CPU

Hardware

Intel 13G i5

Models

Qwen3VL-4B-Instruct-Q8_0.gguf

Problem description & steps to reproduce

This parameter enables the model to run in high-resolution mode, generating up to 16,384 image tokens, which is suitable for scenarios with dense image content.After setting this parameter, when I perform OCR on text-dense images, the parsed token count matches the token count specified by the parameter—both are under 1,000—yet it still fails to recognize successfully.

First Bad Commit

No response

Relevant log output

C:\Users\21>C:\Users\21\Downloads\llama-b7079-bin-win-cpu-x64\llama-server.exe -m "C:\Users\21\Downloads\Qwen3VL-4B-Instruct-Q8_0.gguf" -c 15000 --port 1280 --api-key 123 --mmproj C:\Users\21\Downloads\mmproj-Qwen3VL-4B-Instruct-F16.gguf --chat-template-kwargs "{""vl_high_resolution_images"":true}"
load_backend: loaded RPC backend from C:\Users\21\Downloads\llama-b7079-bin-win-cpu-x64\ggml-rpc.dll
load_backend: loaded CPU backend from C:\Users\21\Downloads\llama-b7079-bin-win-cpu-x64\ggml-cpu-alderlake.dll
main: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)
build: 7079 (416e7c7f4) with clang version 19.1.5 for x86_64-pc-windows-msvc
system info: n_threads = 10, n_threads_batch = 10, total_threads = 12

system_info: n_threads = 10 (n_threads_batch = 10) / 12 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 1280, http threads: 11
main: loading model
srv    load_model: loading model 'C:\Users\21\Downloads\Qwen3VL-4B-Instruct-Q8_0.gguf'
llama_model_loader: loaded meta data with 32 key-value pairs and 398 tensors from C:\Users\21\Downloads\Qwen3VL-4B-Instruct-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3vl
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3Vl 4b Instruct
llama_model_loader: - kv   3:                           general.finetune str              = instruct
llama_model_loader: - kv   4:                           general.basename str              = qwen3vl
llama_model_loader: - kv   5:                         general.size_label str              = 4B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                               general.tags arr[str,1]       = ["image-text-to-text"]
llama_model_loader: - kv   8:                        qwen3vl.block_count u32              = 36
llama_model_loader: - kv   9:                     qwen3vl.context_length u32              = 262144
llama_model_loader: - kv  10:                   qwen3vl.embedding_length u32              = 2560
llama_model_loader: - kv  11:                qwen3vl.feed_forward_length u32              = 9728
llama_model_loader: - kv  12:               qwen3vl.attention.head_count u32              = 32
llama_model_loader: - kv  13:            qwen3vl.attention.head_count_kv u32              = 8
llama_model_loader: - kv  14:                     qwen3vl.rope.freq_base f32              = 5000000.000000
llama_model_loader: - kv  15:   qwen3vl.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  16:               qwen3vl.attention.key_length u32              = 128
llama_model_loader: - kv  17:             qwen3vl.attention.value_length u32              = 128
llama_model_loader: - kv  18:                          general.file_type u32              = 7
llama_model_loader: - kv  19:            qwen3vl.rope.dimension_sections arr[i32,4]       = [24, 20, 20, 0]
llama_model_loader: - kv  20:                 qwen3vl.n_deepstack_layers u32              = 3
llama_model_loader: - kv  21:               general.quantization_version u32              = 2
llama_model_loader: - kv  22:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  23:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  24:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  25:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  26:                      tokenizer.ggml.merges arr[str,151387]  = ["臓 臓", "臓臓 臓臓", "i n", "臓 t",...
llama_model_loader: - kv  27:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  28:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  29:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  30:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  31:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - type  f32:  145 tensors
llama_model_loader: - type q8_0:  253 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 3.98 GiB (8.50 BPW)
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3vl
print_info: vocab_only       = 0
print_info: n_ctx_train      = 262144
print_info: n_embd           = 2560
print_info: n_embd_inp       = 10240
print_info: n_layer          = 36
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 1024
print_info: n_embd_v_gqa     = 1024
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 9728
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: n_expert_groups  = 0
print_info: n_group_used     = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 40
print_info: rope scaling     = linear
print_info: freq_base_train  = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 262144
print_info: rope_finetuned   = unknown
print_info: mrope sections   = [24, 20, 20, 0]
print_info: model type       = 4B
print_info: model params     = 4.02 B
print_info: general.name     = Qwen3Vl 4b Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151643 '<|endoftext|>'
print_info: LF token         = 198 ''
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 36 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 37/37 layers to GPU
load_tensors:   CPU_Mapped model buffer size =  4076.43 MiB
............................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 4
llama_context: n_ctx         = 15104
llama_context: n_ctx_seq     = 15104
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = true
llama_context: freq_base     = 5000000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_seq (15104) < n_ctx_train (262144) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     2.32 MiB
llama_kv_cache:        CPU KV buffer size =  2124.00 MiB
llama_kv_cache: size = 2124.00 MiB ( 15104 cells,  36 layers,  4/1 seqs), K (f16): 1062.00 MiB, V (f16): 1062.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:        CPU compute buffer size =   349.27 MiB
llama_context: graph nodes  = 1267
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 15104
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
clip_model_loader: model name:   Qwen3Vl 4b Instruct
clip_model_loader: description:
clip_model_loader: GGUF version: 3
clip_model_loader: alignment:    32
clip_model_loader: n_tensors:    316
clip_model_loader: n_kv:         25

clip_model_loader: has vision encoder
clip_ctx: CLIP using CPU backend
load_hparams: Qwen-VL models require at minimum 1024 image tokens to function correctly on grounding tasks
load_hparams: if you encounter problems with accuracy, try adding --image-min-tokens 1024
load_hparams: more info: https://github.com/ggml-org/llama.cpp/issues/16842

load_hparams: projector:          qwen3vl_merger
load_hparams: n_embd:             1024
load_hparams: n_head:             16
load_hparams: n_ff:               4096
load_hparams: n_layer:            24
load_hparams: ffn_op:             gelu
load_hparams: projection_dim:     2560

--- vision hparams ---
load_hparams: image_size:         768
load_hparams: patch_size:         16
load_hparams: has_llava_proj:     0
load_hparams: minicpmv_version:   0
load_hparams: n_merge:            2
load_hparams: n_wa_pattern:       0
load_hparams: image_min_pixels:   8192
load_hparams: image_max_pixels:   4194304

load_hparams: model size:         797.43 MiB
load_hparams: metadata size:      0.11 MiB
alloc_compute_meta: warmup with image size = 1472 x 1472
alloc_compute_meta:        CPU compute buffer size =   322.49 MiB
alloc_compute_meta: graph splits = 1, nodes = 766
warmup: flash attention is enabled
srv    load_model: loaded multimodal model, 'C:\Users\21\Downloads\mmproj-Qwen3VL-4B-Instruct-F16.gguf'
srv          init: initializing slots, n_slots = 4
slot         init: id  0 | task -1 | new slot, n_ctx = 15104
slot         init: id  1 | task -1 | new slot, n_ctx = 15104
slot         init: id  2 | task -1 | new slot, n_ctx = 15104
slot         init: id  3 | task -1 | new slot, n_ctx = 15104
srv          init: prompt cache is enabled, size limit: 8192 MiB
srv          init: use `--cache-ram 0` to disable the prompt cache
srv          init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
srv          init: thinking = 0
main: model loaded
main: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' }}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set image_count = namespace(value=0) %}
{%- set video_count = namespace(value=0) %}
{%- for message in messages %}
    {%- if message.role == "user" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "assistant" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content_item in message.content %}
                {%- if 'text' in content_item %}
                    {{- content_item.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and message.content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
{%- endif %}
, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:1280 - starting the main loop
srv  update_slots: all slots are idle

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions