Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 24 additions & 4 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -383,6 +383,17 @@ def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: T
s = self.model_tensors[name]
self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
tensors_to_remove.append(name)
if name.endswith(".activation_scale"): # unused
tensors_to_remove.append(name)
# mistral format
if name.endswith(".qscale_weight"):
weight_name = name.removesuffix("qscale_weight") + "weight"
w = self.model_tensors[weight_name]
s = self.model_tensors[name]
self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
tensors_to_remove.append(name)
if name.endswith(".qscale_act"):
tensors_to_remove.append(name)
elif quant_method == "gptq":
for name in self.model_tensors.keys():
if name.endswith(".qweight"):
Expand Down Expand Up @@ -2854,13 +2865,10 @@ def set_gguf_parameters(self):
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])

def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# TODO: probably not worth supporting quantized weight, as official BF16 is also available
if name.endswith("weight_scale_inv"):
raise ValueError("This is a quantized weight, please use BF16 weight instead")

name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []

return super().modify_tensors(data_torch, name, bid)


Expand Down Expand Up @@ -9898,6 +9906,18 @@ def __init__(self, *args, **kwargs):
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)

def dequant_model(self):
# transform quantization config into HF format
quant_config = self.hparams.get("quantization")
if quant_config is not None:
assert quant_config["qformat_weight"] == "fp8_e4m3"
self.hparams["quantization_config"] = {
"activation_scheme": "static",
"quant_method": "fp8",
"weight_block_size": None,
}
return super().dequant_model()

@staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
Expand Down