Skip to content

Multi-view pedestrian detection via residual mask fusion and cosine similarity-based passive sampler for video surveillance systems

License

Notifications You must be signed in to change notification settings

guixiaojia/RMCS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

15 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Multi-view Pedestrian Detection via Residual Mask Fusion and Cosine Similarity-based Passive Sampler for Video Surveillance Systems

Project Overview

This project proposes a multi-view pedestrian detection method for video surveillance systems, which improves detection performance through residual masking and a passive sampler based on cosine similarity.

Project Structure

improve-shot/
β”œβ”€β”€ multiview_detector/
β”‚   β”œβ”€β”€ datasets/             
β”‚   β”‚   β”œβ”€β”€ MultiviewX.py     # MultiviewX dataset parser
β”‚   β”‚   β”œβ”€β”€ Wildtrack.py      # Wildtrack dataset parser
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   └── frameDataset.py   # Frame Processing
β”‚   β”‚  
β”‚   β”œβ”€β”€ evaluation/ 
β”‚   β”‚  
β”‚   β”œβ”€β”€ loss/ 
β”‚   β”‚   β”œβ”€β”€ __init__.py
β”‚   β”‚   β”œβ”€β”€ gaussian_mse.py   # Gaussian mean square error loss
β”‚   β”‚   └── losses.py         # Focal loss
β”‚   β”‚
β”‚   β”œβ”€β”€ models/               
β”‚   β”‚   β”œβ”€β”€ MultiViewDynamicMask.py # residual mask
β”‚   β”‚   β”œβ”€β”€ fusion3.py              # cosine similarity-based passive sampler
β”‚   β”‚   β”œβ”€β”€ resnet.py               # backbone
β”‚   β”‚   β”œβ”€β”€ shot.py                 # baseline
β”‚   β”‚   └── ops/
β”‚   β”‚
β”‚   β”œβ”€β”€ utils/
β”‚   β”‚
β”‚   └── trainer.py
β”‚
β”œβ”€β”€ LICENSE                   # MIT License
β”œβ”€β”€ README.md
└── main.py

Environment Version

RTX 4090
ubuntu: 20.04
PyTorch: 1.12.0
torchvision: 0.13.0
Numpy: 1.21.2
tqdm: 4.65.2
kornia: 0.6.12
opencv-python: 4.9.0.80
matplotlib: 3.5.2

Dataset Preparation

Dataset link
Wildtrack πŸ”— download link
MultiviewX πŸ”— download link

Train & Validation

python main.py  # The hyperparameters inside main.py are default values, those can be adjusted in your Preference.

Contact Email

guijiajia@stumail.ysu.edu.cn

About

Multi-view pedestrian detection via residual mask fusion and cosine similarity-based passive sampler for video surveillance systems

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published