This project proposes a multi-view pedestrian detection method for video surveillance systems, which improves detection performance through residual masking and a passive sampler based on cosine similarity.
improve-shot/ βββ multiview_detector/ β βββ datasets/ β β βββ MultiviewX.py # MultiviewX dataset parser β β βββ Wildtrack.py # Wildtrack dataset parser β β βββ __init__.py β β βββ frameDataset.py # Frame Processing β β β βββ evaluation/ β β β βββ loss/ β β βββ __init__.py β β βββ gaussian_mse.py # Gaussian mean square error loss β β βββ losses.py # Focal loss β β β βββ models/ β β βββ MultiViewDynamicMask.py # residual mask β β βββ fusion3.py # cosine similarity-based passive sampler β β βββ resnet.py # backbone β β βββ shot.py # baseline β β βββ ops/ β β β βββ utils/ β β β βββ trainer.py β βββ LICENSE # MIT License βββ README.md βββ main.py
RTX 4090
ubuntu: 20.04
PyTorch: 1.12.0
torchvision: 0.13.0
Numpy: 1.21.2
tqdm: 4.65.2
kornia: 0.6.12
opencv-python: 4.9.0.80
matplotlib: 3.5.2
| Dataset | link |
|---|---|
| Wildtrack | π download link |
| MultiviewX | π download link |
python main.py # The hyperparameters inside main.py are default values, those can be adjusted in your Preference.