Skip to content

Problem in data-consistency module #10

@bilalkabas

Description

@bilalkabas

Hi,

Thank you for this great work. While using the repo, I came accross with a problem in data-consistency module. Below is a simple forward pass to the data-consistency module. The problem is in k-space transformation. I wanted to contribute to the repo with a PR addressing this problem. It may help those working on this repo.

import torch
from backbones.reconformer.reconformer import DataConsistencyInKspace

resolution = 320
device = 'cuda:0'

x = torch.randn((1, 2, resolution, resolution)).to(device)
k0 = torch.randn((1, 2, resolution, resolution)).to(device)
mask = torch.randn((1, 1, resolution, resolution)).to(device)

dc = DataConsistencyInKspace()
out = dc(x, k0, mask)

print(f"Input shape: {x.shape}")
print(f"Output shape: {out.shape}")
     46 k0 = k0.permute(0, 2, 3, 1)
     47 mask = mask.permute(0, 2, 3, 1)
...
--> 122 data = torch.fft.fft(data, 2, normalized=normalized)
    123 data = fftshift(data, dim=(-3, -2))
    124 return data

TypeError: fft_fft() got an unexpected keyword argument 'normalized'

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions