Skip to content

h0rn3t/psqlpy-sqlalchemy

Repository files navigation

psqlpy-sqlalchemy

ci ci codecovLicense: MIT pip Updates

SQLAlchemy dialect for psqlpy - a fast PostgreSQL driver for Python.

Overview

This package provides a SQLAlchemy dialect that allows you to use psqlpy as the underlying PostgreSQL driver. psqlpy is a high-performance PostgreSQL driver built on top of Rust's tokio-postgres, offering excellent performance characteristics.

Features

  • High Performance: Built on psqlpy's Rust-based PostgreSQL driver
  • SQLAlchemy 2.0+ Compatible: Full support for modern SQLAlchemy features
  • SQLModel Compatible: Works with SQLModel for Pydantic integration
  • DBAPI 2.0 Compliant: Standard Python database interface
  • Connection Pooling: Leverages psqlpy's built-in connection pooling
  • Transaction Support: Full transaction and savepoint support
  • SSL Support: Configurable SSL connections
  • Advanced Type Support:
    • Native UUID support with efficient caching
    • Full JSONB operator support (@>, <@, ?, ?&, ?|, etc.)
    • PostgreSQL array types
    • Custom type conversion with automatic detection

Installation

pip install psqlpy-sqlalchemy

This will automatically install the required dependencies:

  • sqlalchemy>=2.0.0
  • psqlpy>=0.11.0

Usage

Basic Connection

from sqlalchemy import create_engine

# Basic connection
engine = create_engine("postgresql+psqlpy://user:password@localhost/dbname")

# With connection parameters
engine = create_engine(
    "postgresql+psqlpy://user:password@localhost:5432/dbname"
    "?sslmode=require&application_name=myapp"
)

Connection URL Parameters

The dialect supports standard PostgreSQL connection parameters:

  • host - Database host
  • port - Database port (default: 5432)
  • username - Database username
  • password - Database password
  • database - Database name
  • sslmode - SSL mode (disable, allow, prefer, require, verify-ca, verify-full)
  • application_name - Application name for connection tracking
  • connect_timeout - Connection timeout in seconds

Example Usage

from sqlalchemy import create_engine, text, MetaData, Table, Column, Integer, String
from sqlalchemy.orm import sessionmaker

# Create engine
engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")

# Test connection
with engine.connect() as conn:
    result = conn.execute(text("SELECT version()"))
    print(result.fetchone())

# Using ORM
Session = sessionmaker(bind=engine)
session = Session()

# Define a table
metadata = MetaData()
users = Table('users', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(50)),
    Column('email', String(100))
)

# Create table
metadata.create_all(engine)

# Insert data
with engine.connect() as conn:
    conn.execute(users.insert().values(name='John', email='john@example.com'))
    conn.commit()

# Query data
with engine.connect() as conn:
    result = conn.execute(users.select())
    for row in result:
        print(row)

UUID Support

The dialect provides native UUID support with automatic conversion:

from sqlalchemy import create_engine, Column, text
from sqlalchemy.dialects.postgresql import UUID
import uuid

engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")

# Using UUID columns
with engine.connect() as conn:
    # UUID objects are automatically converted
    user_id = uuid.uuid4()
    conn.execute(
        text("INSERT INTO users (id, name) VALUES (:id, :name)"),
        {"id": user_id, "name": "John"}
    )

    # UUID strings are also supported
    conn.execute(
        text("SELECT * FROM users WHERE id = :id"),
        {"id": "550e8400-e29b-41d4-a716-446655440000"}
    )

    # Explicit casting (recommended for clarity)
    conn.execute(
        text("SELECT * FROM users WHERE id = :id::UUID"),
        {"id": user_id}
    )
    conn.commit()

JSONB Support

Full support for PostgreSQL JSONB operators:

from sqlalchemy import create_engine, Column, Integer, text
from sqlalchemy.dialects.postgresql import JSONB

engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")

with engine.connect() as conn:
    # JSONB contains operator (@>)
    conn.execute(
        text("SELECT * FROM products WHERE metadata @> :filter"),
        {"filter": {"color": "red"}}
    )

    # JSONB path operators
    conn.execute(
        text("SELECT metadata->>'name' FROM products WHERE id = :id"),
        {"id": 1}
    )

    # JSONB existence operators
    conn.execute(
        text("SELECT * FROM products WHERE metadata ? :key"),
        {"key": "color"}
    )
    conn.commit()

Bulk INSERT Operations

The dialect automatically optimizes bulk INSERT operations:

from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData

engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")
metadata = MetaData()

users = Table('users', metadata,
    Column('id', Integer, primary_key=True),
    Column('name', String(50)),
    Column('age', Integer)
)

# Bulk insert - automatically uses multi-value INSERT
data = [
    {"name": f"User{i}", "age": 20 + i}
    for i in range(1000)
]

with engine.begin() as conn:
    # This is converted to a single multi-value INSERT
    # INSERT INTO users (name, age) VALUES ($1, $2), ($3, $4), ..., ($1999, $2000)
    conn.execute(users.insert(), data)
    # ~23x faster than executing 1000 separate INSERT statements!

SQLModel Usage

from typing import Optional
from sqlmodel import Field, Session, SQLModel, create_engine, select

# Define a SQLModel model
class Hero(SQLModel, table=True):
    id: Optional[int] = Field(default=None, primary_key=True)
    name: str
    secret_name: str
    age: Optional[int] = None

# Create engine with psqlpy dialect
engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")

# Create tables
SQLModel.metadata.create_all(engine)

# Insert data
with Session(engine) as session:
    hero = Hero(name="Deadpond", secret_name="Dive Wilson", age=30)
    session.add(hero)
    session.commit()
    session.refresh(hero)
    print(f"Created hero: {hero.name} with id {hero.id}")

# Query data
with Session(engine) as session:
    statement = select(Hero).where(Hero.name == "Deadpond")
    hero = session.exec(statement).first()
    print(f"Found hero: {hero.name}, secret identity: {hero.secret_name}")

Async Usage

While this dialect provides a synchronous interface, psqlpy itself is async-native. For async SQLAlchemy usage, you would typically use SQLAlchemy's async features:

from sqlalchemy.ext.asyncio import create_async_engine

# Note: This would require an async version of the dialect
# The current implementation is synchronous
engine = create_engine("postgresql+psqlpy://user:password@localhost/dbname")

Configuration

SSL Configuration

# Require SSL
engine = create_engine("postgresql+psqlpy://user:pass@host/db?sslmode=require")

# SSL with custom CA file
engine = create_engine("postgresql+psqlpy://user:pass@host/db?sslmode=verify-ca&ca_file=/path/to/ca.pem")

Connection Timeouts

# Set connection timeout
engine = create_engine("postgresql+psqlpy://user:pass@host/db?connect_timeout=30")

Development

Setting up Development Environment

# Clone the repository
git clone https://github.com/your-username/psqlpy-sqlalchemy.git
cd psqlpy-sqlalchemy

# Create virtual environment
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install in development mode
pip install -e .

# Install development dependencies
pip install -e ".[dev]"

Running Tests

pytest tests/

Testing with Real Database

To test with a real PostgreSQL database:

from sqlalchemy import create_engine, text

# Replace with your actual database credentials
engine = create_engine("postgresql+psqlpy://user:password@localhost/testdb")

with engine.connect() as conn:
    result = conn.execute(text("SELECT 1"))
    print("Connection successful:", result.fetchone())

Performance Benchmarking

The project includes a comprehensive performance comparison test between psqlpy-sqlalchemy and asyncpg:

# Run performance benchmark (recommended)
make benchmark

This command will:

  • Automatically start PostgreSQL if not running
  • Install required dependencies
  • Run performance comparison tests across multiple scenarios
  • Clean up resources after completion

The benchmark tests various operations including:

  • Simple SELECT queries
  • Single and bulk INSERT operations
  • Complex queries with aggregations
  • Concurrent operations

For detailed benchmark configuration and results interpretation, see PERFORMANCE_TEST_README.md.

Architecture

The dialect consists of several key components:

  • PSQLPyAsyncDialect (dialect.py): Main dialect class inheriting from PostgreSQL base dialect

    • Handles SQL compilation and type mapping
    • Manages connection creation and pooling
    • Provides asyncpg-compatible naming conventions for migration
  • PSQLPyAdaptDBAPI (dbapi.py): DBAPI 2.0 compliant interface wrapper

    • Adapts psqlpy to SQLAlchemy's expected interface
    • Provides standard exception hierarchy
  • AsyncAdapt_psqlpy_connection (connection.py): Connection adapter

    • Bridges psqlpy's async connections to SQLAlchemy's synchronous interface using await_only
    • Implements transaction management with savepoint support
    • Provides connection health checking with ping() method
  • AsyncAdapt_psqlpy_cursor (connection.py): Cursor implementation

    • Handles query execution with parameter binding
    • Implements multi-value INSERT optimization for bulk operations
    • Supports both regular and server-side cursors
    • Automatic conversion of named parameters to positional ($1, $2, etc.)

Backward Compatibility: Aliases PsqlpyDialect, PsqlpyConnection, and PsqlpyCursor are provided for compatibility.

Protocol-Level Batching

For UPDATE/DELETE operations within transactions, the dialect uses psqlpy's transaction.pipeline():

with engine.begin() as conn:
    # These updates are batched into a single network round-trip
    conn.execute(users.update().where(users.c.id == 1).values(name="John"))
    conn.execute(users.update().where(users.c.id == 2).values(name="Jane"))

This reduces network latency by sending multiple commands in a single batch.

Type Conversion Caching

  • UUID conversion results are cached to avoid repeated parsing
  • Parameter type detection uses cached regex patterns
  • Prepared statement metadata is cached when possible

For detailed performance benchmarks, run make benchmark or see PERFORMANCE_TEST_README.md.

Limitations and Design Considerations

  • Prepared Statement Reuse: psqlpy's Python API requires parameters at prepare() time, preventing prepared statement caching like asyncpg.
  • Error Mapping: All psqlpy exceptions are mapped to a single psqlpy.Error class for DBAPI compatibility

Contributing

Contributions are welcome! Please feel free to submit issues, feature requests, or pull requests.

Development Guidelines

  1. Follow PEP 8 style guidelines
  2. Add tests for new features
  3. Update documentation as needed
  4. Ensure compatibility with SQLAlchemy 2.0+

License

This project is licensed under the MIT License - see the LICENSE file for details.

Related Projects

  • psqlpy - The underlying PostgreSQL driver
  • SQLAlchemy - The Python SQL toolkit and ORM
  • SQLModel - SQLAlchemy-based ORM with Pydantic validation

Changelog

0.1.0a12 (Current)

Performance Optimizations:

  • Implemented multi-value INSERT optimization for bulk operations (23.5x speedup for 100 rows)
  • Added transaction.pipeline() support for UPDATE/DELETE batching
  • Implemented prepared statement caching with automatic type inference
  • Added schema cache invalidation tracking

Type Support Enhancements:

  • Native UUID support with efficient byte conversion and caching
  • Full JSONB operator support (@>, <@, ?, ?&, ?|, ->, ->>, #>, #>>, ||, -, #-)
  • Improved parameter type conversion with caching

API Improvements:

  • Added asyncpg-compatible attribute naming for easier migration
  • Implemented connection health checking with ping() method
  • Added transaction savepoint support
  • Improved error messages for UUID casting issues

Code Quality:

  • Removed performance tracking overhead
  • Optimized connection and cursor implementations
  • Enhanced documentation with technical details
  • Comprehensive test coverage

0.1.0a11

  • Initial alpha release
  • Basic SQLAlchemy dialect implementation
  • DBAPI 2.0 compatible interface
  • SQLModel compatibility
  • Connection string parsing
  • Basic SQL compilation support
  • Transaction support
  • SSL configuration support

About

SQLAlchemy dialect for [psqlpy](https://github.com/qaspen-python/psqlpy) - a fast PostgreSQL driver for Python.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •