Domain plugins for DOIN (Decentralized Optimization and Inference Network).
Simple quadratic function optimization — no ML frameworks needed. Used for testing the full DOIN pipeline.
- Optimizer: Hill-climbing on
f(x) = Σ(x_i - target_i)² - Inferencer: Evaluates parameters against target
- Synthetic Data: Generates noisy target variants for verification
Wraps harveybc/predictor timeseries prediction system. Requires TensorFlow.
- Optimizer: Runs predictor training with genetic algorithm
- Inferencer: Evaluates model on test/synthetic data
- Synthetic Data: Wraps harveybc/timeseries-gan (SC-VAE-GAN) with block bootstrap fallback
doin.optimization/quadratic → QuadraticOptimizer
doin.optimization/predictor → PredictorOptimizer
doin.inference/quadratic → QuadraticInferencer
doin.inference/predictor → PredictorInferencer
doin.synthetic_data/quadratic → QuadraticSyntheticData
doin.synthetic_data/predictor → PredictorSyntheticData
pip install git+https://github.com/harveybc/doin-core.git
pip install git+https://github.com/harveybc/doin-plugins.gitpython -m pytest tests/ -v
# 43 tests (7 e2e lifecycle + unit + integration)test_e2e_lifecycle.py— Full optimae lifecycle: optimize → commit → reveal → quorum → verify → incentive → reputation (7 tests)test_plugins.py— Quadratic plugin unit teststest_network_integration.py— Multi-component integration
- doin-core — Consensus, models, crypto
- doin-node — Unified node
- doin-plugins — This package