Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions FreydCategoriesForCAP/PackageInfo.g
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ SetPackageInfo( rec(

PackageName := "FreydCategoriesForCAP",
Subtitle := "Freyd categories - Formal (co)kernels for additive categories",
Version := "2022.12-03",
Version := "2022.12-04",
Date := Concatenation( "01/", ~.Version{[ 6, 7 ]}, "/", ~.Version{[ 1 .. 4 ]} ),
License := "GPL-2.0-or-later",

Expand Down Expand Up @@ -94,7 +94,6 @@ Dependencies := rec(
[ "GeneralizedMorphismsForCAP", ">= 2018.06.15" ]
],
SuggestedOtherPackages := [
[ "QPA", ">= 2.0" ],
[ "FinSetsForCAP", ">= 2022.05-01" ]
],
ExternalConditions := [ ],
Expand Down
51 changes: 0 additions & 51 deletions FreydCategoriesForCAP/examples/5Lemma.g

This file was deleted.

61 changes: 0 additions & 61 deletions FreydCategoriesForCAP/examples/AdelmanCategoryBasics.g
Original file line number Diff line number Diff line change
Expand Up @@ -59,67 +59,6 @@ IsCongruentForMorphisms( KernelLift( m, KernelEmbedding( m ) ), IdentityMorphism
#! true
#! @EndExample

#! @Section Adelman category basics for for additive closure of algebroids

#! @Example
#! #@if IsPackageMarkedForLoading( "QPA", ">= 2.0" )
LoadPackage( "Algebroids", false );
#! true
quiver := RightQuiver( "Q(9)[a:1->2,b:2->3,c:1->4,d:2->5,e:3->6,f:4->5,g:5->6,h:4->7,i:5->8,j:6->9,k:7->8,l:8->9,m:2->7,n:3->8]" );;
kQ := PathAlgebra( HomalgFieldOfRationals(), quiver );;
Aoid := Algebroid( kQ, [ kQ.ad - kQ.cf,
kQ.dg - kQ.be,
kQ.("fi") - kQ.hk,
kQ.gj - kQ.il,
kQ.mk + kQ.bn - kQ.di ] );;
mm := SetOfGeneratingMorphisms( Aoid );;
CapCategorySwitchLogicOff( Aoid );;
Acat := AdditiveClosure( Aoid );;
a := AsAdditiveClosureMorphism( mm[1] );;
b := AsAdditiveClosureMorphism( mm[2] );;
c := AsAdditiveClosureMorphism( mm[3] );;
d := AsAdditiveClosureMorphism( mm[4] );;
e := AsAdditiveClosureMorphism( mm[5] );;
f := AsAdditiveClosureMorphism( mm[6] );;
g := AsAdditiveClosureMorphism( mm[7] );;
h := AsAdditiveClosureMorphism( mm[8] );;
i := AsAdditiveClosureMorphism( mm[9] );;
j := AsAdditiveClosureMorphism( mm[10] );;
k := AsAdditiveClosureMorphism( mm[11] );;
l := AsAdditiveClosureMorphism( mm[12] );;
m := AsAdditiveClosureMorphism( mm[13] );;
n := AsAdditiveClosureMorphism( mm[14] );;
Adel := AdelmanCategory( Acat );;
A := AdelmanCategoryObject( a, b );;
B := AdelmanCategoryObject( f, g );;
alpha := AdelmanCategoryMorphism( A, d, B );;
IsWellDefined( alpha );
#! true
IsWellDefined( KernelEmbedding( alpha ) );
#! true
IsWellDefined( CokernelProjection( alpha ) );
#! true
T := AdelmanCategoryObject( k, l );;
tau := AdelmanCategoryMorphism( B, i, T );;
IsZeroForMorphisms( PreCompose( alpha, tau ) );
#! true
colift := CokernelColift( alpha, tau );;
IsWellDefined( colift );
#! true
IsCongruentForMorphisms( PreCompose( CokernelProjection( alpha ), colift ), tau );
#! true
lift := KernelLift( tau, alpha );;
IsWellDefined( lift );
#! true
IsCongruentForMorphisms( PreCompose( lift, KernelEmbedding( tau ) ), alpha );
#! true
IsCongruentForMorphisms( ColiftAlongEpimorphism( CokernelProjection( alpha ), tau ), colift );
#! true
IsCongruentForMorphisms( LiftAlongMonomorphism( KernelEmbedding( tau ), alpha ), lift );
#! true
#! #@fi
#! @EndExample

#! @Section Adelman category basics for category of columns

#! @Example
Expand Down
34 changes: 0 additions & 34 deletions FreydCategoriesForCAP/examples/AdelmanHom.g

This file was deleted.

51 changes: 0 additions & 51 deletions FreydCategoriesForCAP/examples/AdelmanSnakeLemma.g

This file was deleted.

57 changes: 0 additions & 57 deletions FreydCategoriesForCAP/examples/Basics.gi
Original file line number Diff line number Diff line change
Expand Up @@ -196,63 +196,6 @@ InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Sourc
#! true
#! @EndExample


#! @Section Basics of additive closure

#! @Example
## Algebroid
#! #@if IsPackageMarkedForLoading( "QPA", ">= 2.0" )
LoadPackage( "Algebroids", false );
#! true
snake_quiver := RightQuiver( "Q(6)[a:1->2,b:2->3,c:1->4,d:2->5,e:3->6,f:4->5,g:5->6]" );;
kQ := PathAlgebra( HomalgFieldOfRationalsInSingular(), snake_quiver );;
A := kQ / [ kQ.ad - kQ.cf, kQ.dg - kQ.be, kQ.ab, kQ.fg ];;
Aoid := Algebroid( kQ, [ kQ.ad - kQ.cf, kQ.dg - kQ.be, kQ.ab, kQ.fg ] );;
s := SetOfObjects( Aoid );;
m := SetOfGeneratingMorphisms( Aoid );;
interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( -m[3] );;
InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( m[3] ), Range( m[3] ), interpretation );;

## additive closure
add := AdditiveClosure( Aoid );;
obj1 := AdditiveClosureObject( [ s[1], s[2] ], add );;
mor := AdditiveClosureMorphism( obj1, [ [ IdentityMorphism( s[1] ), ZeroMorphism( s[1], s[2] ) ], [ ZeroMorphism( s[2], s[1] ), -IdentityMorphism( s[2] ) ] ], obj1 );;
IsWellDefined( mor );;
IsCongruentForMorphisms( PreCompose( mor, mor ), IdentityMorphism( obj1 ) );;
obj2 := AdditiveClosureObject( [ s[3], s[3] ], add );;
id := IdentityMorphism( obj2 );;
objs1:= AdditiveClosureObject( [ s[1] ], add );;
objs2:= AdditiveClosureObject( [ s[2] ], add );;
ids1 := IdentityMorphism( objs1 );;
ids2 := IdentityMorphism( objs2 );;
HomomorphismStructureOnMorphisms( DirectSumFunctorial( [ ids1, ids2 ] ), ids1 );;

interpretation := InterpretMorphismAsMorphismFromDistinguishedObjectToHomomorphismStructure( mor );;
IsCongruentForMorphisms(
InterpretMorphismFromDistinguishedObjectToHomomorphismStructureAsMorphism( Source( mor ), Range( mor ), interpretation ),
mor );;

a := AsAdditiveClosureMorphism( m[1] );;
b := AsAdditiveClosureMorphism( m[2] );;
c := AsAdditiveClosureMorphism( m[3] );;
d := AsAdditiveClosureMorphism( m[4] );;
e := AsAdditiveClosureMorphism( m[5] );;
f := AsAdditiveClosureMorphism( m[6] );;
g := AsAdditiveClosureMorphism( m[7] );;

l := Lift( PreCompose( a, d ), f );;
IsCongruentForMorphisms( PreCompose( l, f ), PreCompose( a, d ) );
#! true
l := Colift( c, PreCompose( a, d ) );;
IsCongruentForMorphisms( PreCompose( c, l ), PreCompose( a, d ) );
#! true
#! #@fi
#! @EndExample





#! @Section Basics based on category of columns

#! @Example
Expand Down
39 changes: 0 additions & 39 deletions FreydCategoriesForCAP/examples/ExactnessConditions.g

This file was deleted.

Loading