Skip to content

LLM Explorer ist eine interaktive, browserbasierte Visualisierungs- und Lernumgebung, die die inneren Abläufe von Large Language Models (Tokenisierung, Embeddings, Attention, Logits und Decoding) Schritt für Schritt erklärbar und experimentell erfahrbar macht.

Notifications You must be signed in to change notification settings

hrmnns/llm-explorer

Repository files navigation

🛰️ LLM Explorer - Phase Model v2.3

An interactive, visual deep-dive into the inner workings of Large Language Models. This simulator visualizes the entire Transformer pipeline—from raw tokenization to the final softmax decision—using a configurable, state-driven simulation engine.

Version React Vite

🏗️ The 6 Phases of Discovery

The application breaks down the complex inference process into six manageable, interactive phases:

  1. Phase 0: Tokenization – See how raw text is split into semantic tokens and mapped to an index.
  2. Phase 1: Embedding & Position – Visualize how tokens are converted into high-dimensional vectors and mixed with positional information.
  3. Phase 2: Attention Mechanism – Explore the core of the Transformer. Toggle between Orbit and Matrix views to see how tokens "attend" to each other across multiple heads.
  4. Phase 3: FFN (Feed Forward Network) – Watch the vector transformation and activation within the semantic MLP layer.
  5. Phase 4: Decoding & Softmax – Manipulate Temperature, Top-K, and Min-P. Experience the Gumbel-Max Trick where token rankings shift dynamically with higher temperature.
  6. Phase 5: Final Analysis – Review the semantic output and the "winning" token path.

🔥 Key Simulation Features

  • Multi-View Attention: Switch between a spatial Orbit view and a precise Grid Matrix view.
  • Gumbel-Max Dynamic Decoding: Realistic temperature scaling that doesn't just flatten probabilities but actually allows for creative "ranking shifts."
  • Configurable Scenarios: Entirely data-driven logic. Add new behaviors, tokens, and attention rules via scenarios.json.
  • Persisted UI State: Your view modes, selected heads, and active tokens are remembered during your session.
  • Global Synchronized Reset: Reset the entire mathematical state without losing your visual configuration.

🛠️ Tech Stack

  • Core: React 18, Vite
  • Logic: Custom LLMEngine class for pure mathematical simulation
  • Styling: Vanilla CSS with a centralized semantic variable system for high performance and clean aesthetics.
  • State Management: React Hooks & Context API for global scenario orchestration.

🚀 Getting Started

  1. Clone the repository
  2. Install dependencies:
    npm install
  3. Run the development server:
    npm run dev
  4. Open in browser: http://localhost:5173

📊 Scenario Configuration

The simulator is powered by a JSON-based domain model located in public/data/scenarios.json. Developers can define:

  • base_vector coordinates for embeddings.
  • attention_profiles with specific token-to-token rules per head.
  • top_k_tokens with base_logit and noise_sensitivity values.

Developed for educational exploration of Transformer architectures.

About

LLM Explorer ist eine interaktive, browserbasierte Visualisierungs- und Lernumgebung, die die inneren Abläufe von Large Language Models (Tokenisierung, Embeddings, Attention, Logits und Decoding) Schritt für Schritt erklärbar und experimentell erfahrbar macht.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published