Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/diffusers/models/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -674,7 +674,7 @@ def forward(
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
):
) -> Tuple[torch.Tensor, torch.Tensor]:
joint_attention_kwargs = joint_attention_kwargs or {}
if self.use_dual_attention:
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
Expand Down
10 changes: 5 additions & 5 deletions src/diffusers/models/transformers/auraflow_transformer_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# limitations under the License.


from typing import Any, Dict, Optional, Union
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
Expand Down Expand Up @@ -92,7 +92,7 @@ def pe_selection_index_based_on_dim(self, h, w):

return selected_indices

def forward(self, latent):
def forward(self, latent) -> torch.Tensor:
batch_size, num_channels, height, width = latent.size()
latent = latent.view(
batch_size,
Expand Down Expand Up @@ -173,7 +173,7 @@ def forward(
hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
attention_kwargs: Optional[Dict[str, Any]] = None,
):
) -> torch.Tensor:
residual = hidden_states
attention_kwargs = attention_kwargs or {}

Expand Down Expand Up @@ -242,7 +242,7 @@ def forward(
encoder_hidden_states: torch.FloatTensor,
temb: torch.FloatTensor,
attention_kwargs: Optional[Dict[str, Any]] = None,
):
) -> Tuple[torch.Tensor, torch.Tensor]:
residual = hidden_states
residual_context = encoder_hidden_states
attention_kwargs = attention_kwargs or {}
Expand Down Expand Up @@ -472,7 +472,7 @@ def forward(
timestep: torch.LongTensor = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/models/transformers/cogvideox_transformer_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def forward(
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_length = encoder_hidden_states.size(1)
attention_kwargs = attention_kwargs or {}

Expand Down Expand Up @@ -441,7 +441,7 @@ def forward(
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
):
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/models/transformers/consisid_transformer_3d.py
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@ def forward(
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_length = encoder_hidden_states.size(1)

# norm & modulate
Expand Down Expand Up @@ -691,7 +691,7 @@ def forward(
id_cond: Optional[torch.Tensor] = None,
id_vit_hidden: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
6 changes: 3 additions & 3 deletions src/diffusers/models/transformers/lumina_nextdit2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
Expand Down Expand Up @@ -124,7 +124,7 @@ def forward(
encoder_mask: torch.Tensor,
temb: torch.Tensor,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
):
) -> torch.Tensor:
"""
Perform a forward pass through the LuminaNextDiTBlock.

Expand Down Expand Up @@ -297,7 +297,7 @@ def forward(
image_rotary_emb: torch.Tensor,
cross_attention_kwargs: Dict[str, Any] = None,
return_dict=True,
) -> torch.Tensor:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
"""
Forward pass of LuminaNextDiT.

Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/models/transformers/transformer_bria.py
Original file line number Diff line number Diff line change
Expand Up @@ -472,7 +472,7 @@ def forward(
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_len = encoder_hidden_states.shape[1]
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

Expand Down Expand Up @@ -588,7 +588,7 @@ def forward(
return_dict: bool = True,
controlnet_block_samples=None,
controlnet_single_block_samples=None,
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
"""
The [`BriaTransformer2DModel`] forward method.

Expand Down
6 changes: 3 additions & 3 deletions src/diffusers/models/transformers/transformer_cogview3plus.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
# limitations under the License.


from typing import Dict, Union
from typing import Dict, Tuple, Union

import torch
import torch.nn as nn
Expand Down Expand Up @@ -79,7 +79,7 @@ def forward(
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
emb: torch.Tensor,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_length = encoder_hidden_states.size(1)

# norm & modulate
Expand Down Expand Up @@ -293,7 +293,7 @@ def forward(
target_size: torch.Tensor,
crop_coords: torch.Tensor,
return_dict: bool = True,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
"""
The [`CogView3PlusTransformer2DModel`] forward method.

Expand Down
4 changes: 2 additions & 2 deletions src/diffusers/models/transformers/transformer_cogview4.py
Original file line number Diff line number Diff line change
Expand Up @@ -494,7 +494,7 @@ def forward(
] = None,
attention_mask: Optional[Dict[str, torch.Tensor]] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Timestep conditioning
(
norm_hidden_states,
Expand Down Expand Up @@ -717,7 +717,7 @@ def forward(
image_rotary_emb: Optional[
Union[Tuple[torch.Tensor, torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]]
] = None,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
10 changes: 5 additions & 5 deletions src/diffusers/models/transformers/transformer_hidream_image.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def __init__(self, hidden_size, frequency_embedding_size=256):
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)

def forward(self, timesteps: torch.Tensor, wdtype: Optional[torch.dtype] = None):
def forward(self, timesteps: torch.Tensor, wdtype: Optional[torch.dtype] = None) -> torch.Tensor:
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
t_emb = self.timestep_embedder(t_emb)
return t_emb
Expand Down Expand Up @@ -87,7 +87,7 @@ def __init__(
self.out_channels = out_channels
self.proj = nn.Linear(in_channels * patch_size * patch_size, out_channels, bias=True)

def forward(self, latent):
def forward(self, latent) -> torch.Tensor:
latent = self.proj(latent)
return latent

Expand Down Expand Up @@ -534,7 +534,7 @@ def forward(
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: torch.Tensor = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
wtype = hidden_states.dtype
(
shift_msa_i,
Expand Down Expand Up @@ -592,7 +592,7 @@ def forward(
encoder_hidden_states: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
image_rotary_emb: torch.Tensor = None,
) -> torch.Tensor:
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
return self.block(
hidden_states=hidden_states,
hidden_states_masks=hidden_states_masks,
Expand Down Expand Up @@ -786,7 +786,7 @@ def forward(
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
**kwargs,
):
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
encoder_hidden_states = kwargs.get("encoder_hidden_states", None)

if encoder_hidden_states is not None:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -529,7 +529,7 @@ def forward(
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)

Expand Down Expand Up @@ -684,7 +684,7 @@ def forward(
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
token_replace_emb: torch.Tensor = None,
num_tokens: int = None,
) -> torch.Tensor:
) -> Tuple[torch.Tensor, torch.Tensor]:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)

Expand Down Expand Up @@ -1038,7 +1038,7 @@ def forward(
guidance: torch.Tensor = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, List, Optional, Tuple
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
Expand Down Expand Up @@ -216,7 +216,7 @@ def forward(
indices_latents_history_4x: Optional[torch.Tensor] = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
):
) -> Union[Tuple[torch.Tensor], Transformer2DModelOutput]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
Expand Down
Loading