Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -171,7 +171,7 @@ Also, say 👋 in our public Discord channel <a href="https://discord.gg/G7tWnz9
<tr style="border-top: 2px solid black">
<td>Text-guided Image Inpainting</td>
<td><a href="https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/inpaint">Stable Diffusion Inpainting</a></td>
<td><a href="https://huggingface.co/runwayml/stable-diffusion-inpainting"> runwayml/stable-diffusion-inpainting </a></td>
<td><a href="https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting"> stable-diffusion-v1-5/stable-diffusion-inpainting </a></td>
</tr>
<tr style="border-top: 2px solid black">
<td>Image Variation</td>
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/api/models/asymmetricautoencoderkl.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ mask_url = "https://huggingface.co/datasets/hf-internal-testing/diffusers-images
original_image = load_image(img_url).resize((512, 512))
mask_image = load_image(mask_url).resize((512, 512))

pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipe = StableDiffusionInpaintPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting")
pipe.vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
pipe.to("cuda")

Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/api/pipelines/stable_diffusion/depth2img.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ The Stable Diffusion model can also infer depth based on an image using [MiDaS](
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## StableDiffusionDepth2ImgPipeline

Expand Down
4 changes: 2 additions & 2 deletions docs/source/en/api/pipelines/stable_diffusion/inpaint.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,14 +21,14 @@ The Stable Diffusion model can also be applied to inpainting which lets you edit
## Tips

It is recommended to use this pipeline with checkpoints that have been specifically fine-tuned for inpainting, such
as [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting). Default
as [stable-diffusion-v1-5/stable-diffusion-inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting). Default
text-to-image Stable Diffusion checkpoints, such as
[stable-diffusion-v1-5/stable-diffusion-v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) are also compatible but they might be less performant.

> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## StableDiffusionInpaintPipeline

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ The Stable Diffusion latent upscaler model was created by [Katherine Crowson](ht
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## StableDiffusionLatentUpscalePipeline

Expand Down
4 changes: 2 additions & 2 deletions docs/source/en/api/pipelines/stable_diffusion/overview.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ Stable Diffusion is trained on 512x512 images from a subset of the LAION-5B data

For more details about how Stable Diffusion works and how it differs from the base latent diffusion model, take a look at the Stability AI [announcement](https://stability.ai/blog/stable-diffusion-announcement) and our own [blog post](https://huggingface.co/blog/stable_diffusion#how-does-stable-diffusion-work) for more technical details.

You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!
You can find the original codebase for Stable Diffusion v1.0 at [CompVis/stable-diffusion](https://github.com/CompVis/stable-diffusion) and Stable Diffusion v2.0 at [Stability-AI/stablediffusion](https://github.com/Stability-AI/stablediffusion) as well as their original scripts for various tasks. Additional official checkpoints for the different Stable Diffusion versions and tasks can be found on the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations. Explore these organizations to find the best checkpoint for your use-case!

The table below summarizes the available Stable Diffusion pipelines, their supported tasks, and an interactive demo:

Expand Down Expand Up @@ -64,7 +64,7 @@ The table below summarizes the available Stable Diffusion pipelines, their suppo
<a href="./inpaint">StableDiffusionInpaint</a>
</td>
<td class="px-4 py-2 text-gray-700">inpainting</td>
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/runwayml/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
<td class="px-4 py-2"><a href="https://huggingface.co/spaces/stable-diffusion-v1-5/stable-diffusion-inpainting"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"/></a>
</td>
</tr>
<tr>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ Here are some examples for how to use Stable Diffusion 2 for each task:
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## Text-to-image

Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/api/pipelines/stable_diffusion/text2img.md
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ The abstract from the paper is:
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## StableDiffusionPipeline

Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/api/pipelines/stable_diffusion/upscale.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ The Stable Diffusion upscaler diffusion model was created by the researchers and
> [!TIP]
> Make sure to check out the Stable Diffusion [Tips](overview#tips) section to learn how to explore the tradeoff between scheduler speed and quality, and how to reuse pipeline components efficiently!
>
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis), [Runway](https://huggingface.co/runwayml), and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!
> If you're interested in using one of the official checkpoints for a task, explore the [CompVis](https://huggingface.co/CompVis) and [Stability AI](https://huggingface.co/stabilityai) Hub organizations!

## StableDiffusionUpscalePipeline

Expand Down
4 changes: 2 additions & 2 deletions docs/source/en/training/adapt_a_model.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,12 +16,12 @@ pipeline.unet.config["in_channels"]
4
```

Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting):
Inpainting requires 9 channels in the input sample. You can check this value in a pretrained inpainting model like [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting):

```py
from diffusers import StableDiffusionPipeline

pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", use_safetensors=True)
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting", use_safetensors=True)
pipeline.unet.config["in_channels"]
9
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/en/using-diffusers/inference_with_lcm.md
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ from diffusers import AutoPipelineForInpainting, LCMScheduler
from diffusers.utils import load_image, make_image_grid

pipe = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
Expand Down
30 changes: 15 additions & 15 deletions docs/source/en/using-diffusers/inpaint.md
Original file line number Diff line number Diff line change
Expand Up @@ -112,7 +112,7 @@ blurred_mask

## Popular models

[Stable Diffusion Inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.
[Stable Diffusion Inpainting](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting), [Stable Diffusion XL (SDXL) Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), and [Kandinsky 2.2 Inpainting](https://huggingface.co/kandinsky-community/kandinsky-2-2-decoder-inpaint) are among the most popular models for inpainting. SDXL typically produces higher resolution images than Stable Diffusion v1.5, and Kandinsky 2.2 is also capable of generating high-quality images.

### Stable Diffusion Inpainting

Expand All @@ -124,7 +124,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -244,15 +244,15 @@ make_image_grid([init_image, image], rows=1, cols=2)
```

</hfoption>
<hfoption id="runwayml/stable-diffusion-inpainting">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-inpainting">

```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand All @@ -278,7 +278,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint-specific.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-inpainting</figcaption>
</div>
</div>

Expand Down Expand Up @@ -308,15 +308,15 @@ make_image_grid([init_image, image], rows=1, cols=2)
```

</hfoption>
<hfoption id="runwayml/stable-diffusion-inpaint">
<hfoption id="stable-diffusion-v1-5/stable-diffusion-inpaint">

```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand All @@ -340,7 +340,7 @@ make_image_grid([init_image, image], rows=1, cols=2)
</div>
<div>
<img class="rounded-xl" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/specific-inpaint-basic.png"/>
<figcaption class="mt-2 text-center text-sm text-gray-500">runwayml/stable-diffusion-inpainting</figcaption>
<figcaption class="mt-2 text-center text-sm text-gray-500">stable-diffusion-v1-5/stable-diffusion-inpainting</figcaption>
</div>
</div>

Expand All @@ -358,7 +358,7 @@ from diffusers.utils import load_image, make_image_grid

device = "cuda"
pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting",
"stable-diffusion-v1-5/stable-diffusion-inpainting",
torch_dtype=torch.float16,
variant="fp16"
)
Expand Down Expand Up @@ -396,7 +396,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -441,7 +441,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -481,7 +481,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -606,7 +606,7 @@ from diffusers import AutoPipelineForInpainting, AutoPipelineForImage2Image
from diffusers.utils import load_image, make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -683,7 +683,7 @@ from diffusers import AutoPipelineForInpainting
from diffusers.utils import make_image_grid

pipeline = AutoPipelineForInpainting.from_pretrained(
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16,
"stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16,
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down Expand Up @@ -714,7 +714,7 @@ controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpai

# pass ControlNet to the pipeline
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, variant="fp16"
)
pipeline.enable_model_cpu_offload()
# remove following line if xFormers is not installed or you have PyTorch 2.0 or higher installed
Expand Down
2 changes: 1 addition & 1 deletion docs/source/ko/optimization/torch2.0.md
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,7 @@ mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data
init_image = download_image(img_url).resize((512, 512))
mask_image = download_image(mask_url).resize((512, 512))

path = "runwayml/stable-diffusion-inpainting"
path = "stable-diffusion-v1-5/stable-diffusion-inpainting"

run_compile = True # Set True / False

Expand Down
4 changes: 2 additions & 2 deletions docs/source/ko/training/adapt_a_model.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,12 +28,12 @@ pipeline.unet.config["in_channels"]
4
```

인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`runwayml/stable-diffusion-inpainting`](https://huggingface.co/runwayml/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:
인페인팅은 입력 샘플에 9개의 채널이 필요합니다. [`stable-diffusion-v1-5/stable-diffusion-inpainting`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-inpainting)와 같은 사전학습된 인페인팅 모델에서 이 값을 확인할 수 있습니다:

```py
from diffusers import StableDiffusionPipeline

pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
pipeline = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-inpainting")
pipeline.unet.config["in_channels"]
9
```
Expand Down
Loading
Loading