Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
30 commits
Select commit Hold shift + click to select a range
63b3884
add sdpa processor
patil-suraj Feb 9, 2023
ae47101
don't use it by default
patil-suraj Feb 9, 2023
18cf002
Merge branch 'main' of https://github.com/huggingface/diffusers into …
patil-suraj Feb 9, 2023
92065dc
add some checks and style
patil-suraj Feb 9, 2023
9656f01
typo
patil-suraj Feb 9, 2023
6285099
Merge branch 'main' into torch2.0
patil-suraj Feb 14, 2023
00849d0
support torch sdpa in dreambooth example
patil-suraj Feb 14, 2023
0554cd6
Merge branch 'main' into torch2.0
patil-suraj Feb 15, 2023
e25cecd
use torch attn proc by default when available
patil-suraj Feb 15, 2023
904b389
Merge branch 'torch2.0' of https://github.com/huggingface/diffusers i…
patil-suraj Feb 15, 2023
23a40eb
typo
patil-suraj Feb 15, 2023
640f875
add attn mask
patil-suraj Feb 17, 2023
aaa83ec
fix naming
patil-suraj Feb 17, 2023
e28f299
being doc
patil-suraj Feb 17, 2023
4d6458c
doc
patil-suraj Feb 17, 2023
0b7eac8
Apply suggestions from code review
patil-suraj Feb 17, 2023
907869b
polish
patil-suraj Feb 17, 2023
8be0286
torctree
patil-suraj Feb 17, 2023
967fed2
Apply suggestions from code review
patil-suraj Feb 17, 2023
34c6cdb
better name
patil-suraj Feb 17, 2023
4a38b12
style
patil-suraj Feb 17, 2023
a21bb88
add benchamrk table
patil-suraj Feb 17, 2023
59630d2
Update docs/source/en/optimization/torch2.0.mdx
patil-suraj Feb 17, 2023
b5c6565
up
patil-suraj Feb 17, 2023
a1e87ee
Merge branch 'torch2.0' of https://github.com/huggingface/diffusers i…
patil-suraj Feb 17, 2023
c5a7bd5
fix example
patil-suraj Feb 17, 2023
88efe89
check if processor is None
patil-suraj Feb 17, 2023
238ee95
Apply suggestions from code review
patil-suraj Feb 17, 2023
3607326
add fp32 benchmakr
patil-suraj Feb 17, 2023
e45029d
Apply suggestions from code review
patrickvonplaten Feb 17, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/source/en/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,8 @@
- sections:
- local: optimization/fp16
title: Memory and Speed
- local: optimization/torch2.0
title: Torch2.0 support
- local: optimization/xformers
title: xFormers
- local: optimization/onnx
Expand Down
200 changes: 200 additions & 0 deletions docs/source/en/optimization/torch2.0.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,200 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Torch2.0 support in Diffusers

Starting from version `0.13.0`, Diffusers supports the latest optimization from the upcoming [PyTorch 2.0](https://pytorch.org/get-started/pytorch-2.0/) release. These include:
1. Support for native flash and memory-efficient attention without any extra dependencies.
2. [`torch.compile`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) support for compiling individual models for extra performance boost.


## Installation
To benefit from the native efficient attention and `torch.compile`, we will need to install the nightly version of PyTorch as the stable version is yet to be released. The first step is to install CUDA11.7 or CUDA11.8,
as torch2.0 does not support the previous versions. Once CUDA is installed, torch nightly can be installed using:

```bash
pip install --pre torch torchvision --index-url https://download.pytorch.org/whl/nightly/cu117
```

## Using efficient attention and torch.compile.


1. **Efficient Attention**

Efficient attention is implemented via the [`torch.nn.functional.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention) function, which automatically enables flash/memory efficient attention, depending on the input and the GPU type. This is the same as the `memory_efficient_attention` from [xFormers](https://github.com/facebookresearch/xformers) but built natively into PyTorch.

Efficient attention will be enabled by default in Diffusers if torch2.0 is installed and if `torch.nn.functional.scaled_dot_product_attention` is available. To use it, you can install torch2.0 as suggested above and use the pipeline. For example:

```Python
import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
pipe = pipe.to("cuda")

prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```

If you want to enable it explicitly (which is not required), you can do so as shown below.

```Python
import torch
from diffusers import StableDiffusionPipeline
from diffusers.models.cross_attention import AttnProccesor2_0

pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to("cuda")
pipe.unet.set_attn_processor(AttnProccesor2_0())

prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt).images[0]
```

This should be as fast and memory efficient as `xFormers`.


2. **torch.compile**

To get an additional speedup, we can use the new `torch.compile` feature. To do so, we wrap our `unet` with `torch.compile`. For more information and different options, refer to the
[torch compile docs](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html).

```python
import torch
from diffusers import StableDiffusionPipeline

pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16).to(
"cuda"
)
pipe.unet = torch.compile(pipe.unet)

batch_size = 10
prompt = "A photo of an astronaut riding a horse on marse."
images = pipe(prompt, num_inference_steps=steps, num_images_per_prompt=batch_size).images
```

Depending on the type of GPU it can give between 2-9% speed-up over efficient attention. But note that as of now the speed-up is mostly noticeable on the more recent GPU architectures, such as in the A100.

Note that compilation will also take some time to complete, so it is best suited for situations where you need to prepare your pipeline once and then perform the same type of inference operations multiple times.


## Benchmark

We conducted a simple benchmark on different GPUs to compare vanilla attention, xFormers, `torch.nn.functional.scaled_dot_product_attention` and `torch.compile+torch.nn.functional.scaled_dot_product_attention`.
For the benchmark we used the the [stable-diffusion-v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4) model with 50 steps. `xFormers` benchmark is done using the `torch==1.13.1` version. The table below summarizes the result that we got.
The `Speed over xformers` columns denotes the speed-up gained over `xFormers` using the `torch.compile+torch.nn.functional.scaled_dot_product_attention`.


### FP16 benchmark

The table below shows the benchmark results for inference using `fp16`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
And using `torch.compile` gives further speed-up up to 10% over `xFormers`, but it's mostly noticeable on the A100 GPU.

___The time reported is in seconds.___

| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) |
| --- | --- | --- | --- | --- | --- | --- |
| A100 | 10 | 12.02 | 8.7 | 8.79 | 7.89 | 9.31 |
| A100 | 16 | 18.95 | 13.57 | 13.67 | 12.25 | 9.73 |
| A100 | 32 (1) | OOM | 26.56 | 26.68 | 24.08 | 9.34 |
| A100 | 64(2) | | 52.51 | 53.03 | 47.81 | 8.95 |
| | | | | | | |
| T4 | 4 | 38.81 | 30.09 | 29.74 | 27.55 | 8.44 |
| T4 | 8 | OOM | 55.71 | 55.99 | 53.85 | 3.34 |
| T4 | 10 | OOM | 68.96 | 69.86 | 65.35 | 5.23 |
| T4 | 16 | OOM | 111.47 | 113.26 | 106.93 | 4.07 |
| | | | | | | |
| V100 | 4 | 9.84 | 8.16 | 8.09 | 7.65 | 6.25 |
| V100 | 8 | OOM | 15.62 | 15.44 | 14.59 | 6.59 |
| V100 | 10 | OOM | 19.52 | 19.28 | 18.18 | 6.86 |
| V100 | 16 | OOM | 30.29 | 29.84 | 28.22 | 6.83 |
| | | | | | | |
| A10 | 4 | 13.94 | 9.81 | 10.01 | 9.35 | 4.69 |
| A10 | 8 | 27.09 | 19 | 19.53 | 18.33 | 3.53 |
| A10 | 10 | 33.69 | 23.53 | 24.19 | 22.52 | 4.29 |
| A10 | 16 | OOM | 37.55 | 38.31 | 36.81 | 1.97 |
| A10 | 32 (1) | | 77.19 | 78.43 | 76.64 | 0.71 |
| A10 | 64 (1) | | 173.59 | 158.99 | 155.14 | 10.63 |
| | | | | | | |
| 3090 | 4 | 10.04 | 7.82 | 7.89 | 7.47 | 4.48 |
| 3090 | 8 | 19.27 | 14.97 | 15.04 | 14.22 | 5.01 |
| 3090 | 10| 24.08 | 18.7 | 18.7 | 17.69 | 5.40 |
| 3090 | 16 | OOM | 29.06 | 29.06 | 28.2 | 2.96 |
| 3090 | 32 (1) | | 58.05 | 58 | 54.88 | 5.46 |
| 3090 | 64 (1) | | 126.54 | 126.03 | 117.33 | 7.28 |
| | | | | | | |
| 3090 Ti | 4 | 9.07 | 7.14 | 7.15 | 6.81 | 4.62 |
| 3090 Ti | 8 | 17.51 | 13.65 | 13.72 | 12.99 | 4.84 |
| 3090 Ti | 10 (2) | 21.79 | 16.85 | 16.93 | 16.02 | 4.93 |
| 3090 Ti | 16 | OOM | 26.1 | 26.28 | 25.46 | 2.45 |
| 3090 Ti | 32 (1) | | 51.78 | 52.04 | 49.15 | 5.08 |
| 3090 Ti | 64 (1) | | 112.02 | 112.33 | 103.91 | 7.24 |



### FP32 benchmark

The table below shows the benchmark results for inference using `fp32`. As we can see, `torch.nn.functional.scaled_dot_product_attention` is as fast as `xFormers` (sometimes slightly faster/slower) on all the GPUs we tested.
Using `torch.compile` with efficient attention gives up to 18% performance improvement over `xFormers` in Ampere cards, and up to 20% over vanilla attention.

| GPU | Batch Size | Vanilla Attention | xFormers | PyTorch2.0 SDPA | SDPA + torch.compile | Speed over xformers (%) | Speed over vanilla (%) |
| --- | --- | --- | --- | --- | --- | --- | --- |
| A100 | 4 | 16.56 | 12.42 | 12.2 | 11.84 | 4.67 | 28.50 |
| A100 | 10 | OOM | 29.93 | 29.44 | 28.5 | 4.78 | |
| A100 | 16 | | 47.08 | 46.27 | 44.8 | 4.84 | |
| A100 | 32 | | 92.89 | 91.34 | 88.35 | 4.89 | |
| A100 | 64 | | 185.3 | 182.71 | 176.48 | 4.76 | |
| | | | | | | |
| T4 | 1 | 28.2 | 24.49 | 23.93 | 23.56 | 3.80 | 16.45 |
| T4 | 2 | 52.77 | 45.7 | 45.88 | 45.06 | 1.40 | 14.61 |
| T4 | 4 | OOM | 85.72 | 85.78 | 84.48 | 1.45 | |
| T4 | 8 | | 149.64 | 150.75 | 148.4 | 0.83 | |
| | | | | | | |
| V100 | 1 | 7.4 | 6.84 | 6.8 | 6.66 | 2.63 | 10.00 |
| V100 | 2 | 13.85 | 12.81 | 12.66 | 12.35 | 3.59 | 10.83 |
| V100 | 4 | OOM | 25.73 | 25.31 | 24.78 | 3.69 | |
| V100 | 8 | | 43.95 | 43.37 | 42.25 | 3.87 | |
| V100 | 16 | | 84.99 | 84.73 | 82.55 | 2.87 | |
| | | | | | | |
| 3090 | 1 | 7.09 | 6.78 | 6.11 | 6.03 | 11.06 | 14.95 |
| 3090 | 4 | 22.69 | 21.45 | 18.67 | 18.09 | 15.66 | 20.27 |
| 3090 | 8 (2) | | 42.59 | 36.75 | 35.59 | 16.44 | |
| 3090 | 16 | | 85.35 | 72.37 | 70.25 | 17.69 | |
| 3090 | 32 (1) | | 162.05 | 138.99 | 134.53 | 16.98 | |
| 3090 | 48 | | 241.91 | 207.75 | | 14.12 | |
| | | | | | | |
| 3090 Ti | 1 | 6.45 | 6.19 | 5.64 | 5.49 | 11.31 | 14.88 |
| 3090 Ti | 4 | 20.32 | 19.31 | 16.9 | 16.37 | 15.23 | 19.44 |
| 3090 Ti | 8 (2) | | 37.93 | 33.05 | 31.99 | 15.66 | |
| 3090 Ti | 16 | | 75.37 | 65.25 | 64.32 | 14.66 | |
| 3090 Ti | 32 (1) | | 142.55 | 124.44 | 120.74 | 15.30 | |
| 3090 Ti | 48 | | 213.19 | 186.55 | | 12.50 | |
| | | | | | | |
| 4090 | 1 | 5.54 | 4.99 | | | | |
| 4090 | 4 | 13.67 | 11.4 | | | | |
| 4090 | 8 (2) | | 19.79 | | | | |
| 4090 | 16 | | 38.62 | | | | |
| 4090 | 32 (1) | | 76.57 | | | | |
| 4090 | 48 | | 114.44 | | | 13.68 | |
| | | | | | | |
| A10 | 1 | 10.59 | 8.81 | 7.51 | 7.35 | 16.57 | 30.59 |
| A10 | 4 | 34.77 | 27.63 | 22.77 | 22.07 | 20.12 | 36.53 |
| A10 | 8 | | 56.19 | 43.53 | 43.86 | 21.94 | |
| A10 | 16 | | 116.49 | 88.56 | 86.64 | 25.62 | |
| A10 | 32 | | 221.95 | 175.74 | 168.18 | 24.23 | |
| A10 | 48 | | 333.23 | 264.84 | | 20.52 | |
| | | | | | | |


(1) Batch Size >= 32 requires enable_vae_slicing() because of https://github.com/pytorch/pytorch/issues/81665
This is required for PyTorch 1.13.1, and also for PyTorch 2.0 and batch size of 64

For more details about how this benchmark was run, please refer to [this PR](https://github.com/huggingface/diffusers/pull/2303).
49 changes: 48 additions & 1 deletion src/diffusers/models/cross_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,10 @@ def __init__(
self.to_out.append(nn.Dropout(dropout))

# set attention processor
processor = processor if processor is not None else CrossAttnProcessor()
# We use the AttnProccesor2_0 by default when torch2.x is used which uses
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
if processor is None:
processor = AttnProccesor2_0() if hasattr(F, "scaled_dot_product_attention") else CrossAttnProcessor()
self.set_processor(processor)

def set_use_memory_efficient_attention_xformers(
Expand Down Expand Up @@ -463,6 +466,50 @@ def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=No
return hidden_states


class AttnProccesor2_0:
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProccesor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

def __call__(self, attn: CrossAttention, hidden_states, encoder_hidden_states=None, attention_mask=None):
batch_size, sequence_length, inner_dim = hidden_states.shape

if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

query = attn.to_q(hidden_states)

if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.cross_attention_norm:
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)

key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)

head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)

hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)

# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states


class LoRAXFormersCrossAttnProcessor(nn.Module):
def __init__(self, hidden_size, cross_attention_dim, rank=4, attention_op: Optional[Callable] = None):
super().__init__()
Expand Down