Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions tests/test_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,9 @@
if 'GITHUB_ACTIONS' in os.environ: # and 'Linux' in platform.system():
# GitHub Linux runner is slower and hits memory limits sooner than MacOS, exclude bigger models
EXCLUDE_FILTERS = [
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm', '*101x3_bitm',
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*'] + NON_STD_FILTERS
'*efficientnet_l2*', '*resnext101_32x48d', '*in21k', '*152x4_bitm',
'*nfnet_f3*', '*nfnet_f4*', '*nfnet_f5*', '*nfnet_f6*', '*nfnet_f7*',
'*resnetrs200*', '*resnetrs270*', '*resnetrs350*', '*resnetrs420*'] + NON_STD_FILTERS
else:
EXCLUDE_FILTERS = NON_STD_FILTERS

Expand Down
99 changes: 90 additions & 9 deletions timm/models/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,23 @@ def _cfg(url='', **kwargs):
interpolation='bicubic'),
'resnetblur50': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnetblur50-84f4748f.pth',
interpolation='bicubic')
interpolation='bicubic'),

# ResNet-RS models
'resnetrs50': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs101': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs152': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs200': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs270': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs350': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
'resnetrs420': _cfg(
interpolation='bicubic', first_conv='conv1.0'),
}


Expand Down Expand Up @@ -318,7 +334,7 @@ class Bottleneck(nn.Module):

def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, base_width=64,
reduce_first=1, dilation=1, first_dilation=None, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d,
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None):
attn_layer=None, aa_layer=None, drop_block=None, drop_path=None, **kwargs):
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@rwightman FYI this is change that you might want to review specifically. I have added **kwargs to Bottleneck block that get passed to attention layers.

This is to pass in reduction_ratio=0.25 for se layers as mentioned in the paper.

super(Bottleneck, self).__init__()

width = int(math.floor(planes * (base_width / 64)) * cardinality)
Expand All @@ -341,7 +357,7 @@ def __init__(self, inplanes, planes, stride=1, downsample=None, cardinality=1, b
self.conv3 = nn.Conv2d(width, outplanes, kernel_size=1, bias=False)
self.bn3 = norm_layer(outplanes)

self.se = create_attn(attn_layer, outplanes)
self.se = create_attn(attn_layer, outplanes, **kwargs)
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

These **kwargs get passed to Bottleneck using block_args in model_config as in L1112 model definition for resnetrs152


self.act3 = act_layer(inplace=True)
self.downsample = downsample
Expand Down Expand Up @@ -545,11 +561,12 @@ def __init__(self, block, layers, num_classes=1000, in_chans=3,
cardinality=1, base_width=64, stem_width=64, stem_type='',
output_stride=32, block_reduce_first=1, down_kernel_size=1, avg_down=False,
act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, drop_rate=0.0, drop_path_rate=0.,
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None):
drop_block_rate=0., global_pool='avg', zero_init_last_bn=True, block_args=None, replace_stem_max_pool=False):
block_args = block_args or dict()
assert output_stride in (8, 16, 32)
self.num_classes = num_classes
self.drop_rate = drop_rate
self.replace_stem_max_pool = replace_stem_max_pool
super(ResNet, self).__init__()

# Stem
Expand All @@ -574,12 +591,19 @@ def __init__(self, block, layers, num_classes=1000, in_chans=3,
self.feature_info = [dict(num_chs=inplanes, reduction=2, module='act1')]

# Stem Pooling
if aa_layer is not None:
self.maxpool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=inplanes, stride=2)])
if not self.replace_stem_max_pool:
if aa_layer is not None:
self.maxpool = nn.Sequential(*[
nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
aa_layer(channels=inplanes, stride=2)])
else:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
else:
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.maxpool = nn.Sequential(*[
nn.Conv2d(inplanes, inplanes, 3, stride=2, padding=1, bias=False),
norm_layer(inplanes),
act_layer(inplace=True)
])

# Feature Blocks
channels = [64, 128, 256, 512]
Expand Down Expand Up @@ -1065,6 +1089,63 @@ def ecaresnet50d(pretrained=False, **kwargs):
return _create_resnet('ecaresnet50d', pretrained, **model_args)


@register_model
def resnetrs50(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 6, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs50', pretrained, **model_args)


@register_model
def resnetrs101(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 4, 23, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs101', pretrained, **model_args)


@register_model
def resnetrs152(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 8, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs152', pretrained, **model_args)


@register_model
def resnetrs200(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[3, 24, 36, 3], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs200', pretrained, **model_args)


@register_model
def resnetrs270(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 29, 53, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs270', pretrained, **model_args)



@register_model
def resnetrs350(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 36, 72, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs350', pretrained, **model_args)


@register_model
def resnetrs420(pretrained=False, **kwargs):
model_args = dict(
block=Bottleneck, layers=[4, 44, 87, 4], stem_width=32, stem_type='deep', replace_stem_max_pool=True,
avg_down=True, block_args=dict(attn_layer='se', reduction_ratio=0.25), **kwargs)
return _create_resnet('resnetrs420', pretrained, **model_args)


@register_model
def ecaresnet50d_pruned(pretrained=False, **kwargs):
"""Constructs a ResNet-50-D model pruned with eca.
Expand Down