Skip to content

Conversation

@edelarua
Copy link
Contributor

@edelarua edelarua commented May 14, 2025

Pull Request

Fixes #1419

I think Davide reported this when he first made the function but it was only producing the warning locally at the time.

@edelarua edelarua added the sme label May 14, 2025
@github-actions
Copy link
Contributor

github-actions bot commented May 14, 2025

Unit Tests Summary

    1 files     85 suites   1m 20s ⏱️
  880 tests   871 ✅   9 💤 0 ❌
1 897 runs  1 198 ✅ 699 💤 0 ❌

Results for commit af43f7a.

♻️ This comment has been updated with latest results.

@github-actions
Copy link
Contributor

Unit Test Performance Difference

Test Suite $Status$ Time on main $±Time$ $±Tests$ $±Skipped$ $±Failures$ $±Errors$
analyze_vars_in_cols 💔 $2.42$ $+3.51$ $+17$ $-7$ $0$ $0$
count_occurrences 💔 $0.80$ $+1.64$ $+10$ $-8$ $0$ $0$
summarize_coxreg 💔 $3.25$ $+1.91$ $+13$ $-13$ $0$ $0$
summarize_num_patients 💔 $1.15$ $+1.26$ $+18$ $-17$ $0$ $0$
Additional test case details
Test Suite $Status$ Time on main $±Time$ Test Case
analyze_vars_in_cols 💔 $0.64$ $+1.50$ summarize_works_with_nested_analyze

Results for commit 39cc389

♻️ This comment has been updated with latest results.

@edelarua edelarua enabled auto-merge (squash) May 14, 2025 21:35
@github-actions
Copy link
Contributor

badge

Code Coverage Summary

Filename                                   Stmts    Miss  Cover    Missing
---------------------------------------  -------  ------  -------  ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
R/abnormal_by_baseline.R                     101       3  97.03%   242, 244-245
R/abnormal_by_marked.R                        88       8  90.91%   94-98, 281, 283-284
R/abnormal_by_worst_grade.R                   94       3  96.81%   215, 217-218
R/abnormal_lab_worsen_by_baseline.R          159      10  93.71%   205-208, 213, 215-216, 459-461
R/abnormal.R                                  78       2  97.44%   222, 224
R/analyze_variables.R                        287       5  98.26%   587-590, 778
R/analyze_vars_in_cols.R                     178      14  92.13%   178, 221, 235-236, 238, 246-254
R/bland_altman.R                              92       1  98.91%   46
R/combination_function.R                       9       0  100.00%
R/compare_variables.R                         35       0  100.00%
R/control_incidence_rate.R                    10       0  100.00%
R/control_logistic.R                           7       0  100.00%
R/control_step.R                              23       1  95.65%   58
R/control_survival.R                          15       0  100.00%
R/count_cumulative.R                         115       4  96.52%   74, 270-271, 273
R/count_missed_doses.R                        89       4  95.51%   206-209
R/count_occurrences_by_grade.R               169       8  95.27%   178, 386, 388, 465, 467, 469, 473-474
R/count_occurrences.R                        137      10  92.70%   119, 262-264, 330-332, 334, 338-339
R/count_patients_events_in_cols.R             67       1  98.51%   60
R/count_patients_with_event.R                 73       2  97.26%   220, 223
R/count_patients_with_flags.R                 93       2  97.85%   234, 236
R/count_values.R                              61       2  96.72%   193, 196
R/cox_regression_inter.R                     154       0  100.00%
R/cox_regression.R                           161       0  100.00%
R/coxph.R                                    167       7  95.81%   191-195, 238, 253, 261, 267-268
R/d_pkparam.R                                406       0  100.00%
R/decorate_grob.R                            113       0  100.00%
R/desctools_binom_diff.R                     621      64  89.69%   53, 88-89, 125-126, 129, 199, 223-232, 264, 266, 286, 290, 294, 298, 353, 356, 359, 362, 422, 430, 439, 444-447, 454, 457, 466, 469, 516-517, 519-520, 522-523, 525-526, 593, 604-616, 620, 663, 676, 680
R/df_explicit_na.R                            30       0  100.00%
R/estimate_multinomial_rsp.R                  86       4  95.35%   65, 212, 214-215
R/estimate_proportion.R                      240       7  97.08%   88, 99, 255, 257-258, 389, 553
R/fit_rsp_step.R                              36       0  100.00%
R/fit_survival_step.R                         36       0  100.00%
R/formatting_functions.R                     183       2  98.91%   141, 276
R/g_forest.R                                 585      60  89.74%   240, 252-255, 260-261, 275, 277, 287-290, 335-338, 345, 414, 501, 514, 518-519, 524-525, 538, 554, 601, 630, 705, 714, 720, 739, 794-814, 817, 828, 847, 902, 905, 1040-1045
R/g_ipp.R                                    133       0  100.00%
R/g_km.R                                     350      57  83.71%   285-288, 307-309, 363-366, 400, 428, 432-475, 482-486
R/g_lineplot.R                               260      22  91.54%   204, 378-385, 424-434, 543, 551
R/g_step.R                                    68       1  98.53%   108
R/g_waterfall.R                               47       0  100.00%
R/h_adsl_adlb_merge_using_worst_flag.R        73       0  100.00%
R/h_biomarkers_subgroups.R                    91      23  74.73%   40-42, 84-103
R/h_cox_regression.R                         110       0  100.00%
R/h_incidence_rate.R                          45       0  100.00%
R/h_km.R                                     509      41  91.94%   137, 189-194, 287, 378, 380-381, 392-394, 413, 420-421, 423-425, 433-435, 460, 465-468, 651-654, 1108-1119
R/h_logistic_regression.R                    468       3  99.36%   203-204, 273
R/h_map_for_count_abnormal.R                  54       0  100.00%
R/h_pkparam_sort.R                            15       0  100.00%
R/h_response_biomarkers_subgroups.R           77      12  84.42%   50-55, 107-112
R/h_response_subgroups.R                     178      18  89.89%   257-270, 329-334
R/h_stack_by_baskets.R                        64       1  98.44%   89
R/h_step.R                                   180       0  100.00%
R/h_survival_biomarkers_subgroups.R           73       6  91.78%   111-116
R/h_survival_duration_subgroups.R            207      18  91.30%   259-271, 336-341
R/imputation_rule.R                           17       0  100.00%
R/incidence_rate.R                           103       7  93.20%   68-73, 242
R/logistic_regression.R                      102       0  100.00%
R/missing_data.R                              21       3  85.71%   32, 66, 76
R/odds_ratio.R                               157       4  97.45%   270-273
R/prop_diff_test.R                           144       2  98.61%   230, 232
R/prop_diff.R                                318      17  94.65%   71-74, 106, 299, 301, 373-380, 523, 688
R/prune_occurrences.R                         57       0  100.00%
R/response_biomarkers_subgroups.R            124      10  91.94%   88-91, 270-275
R/response_subgroups.R                       247      16  93.52%   100-105, 271-275, 280, 282-283, 310-311
R/riskdiff.R                                  65       4  93.85%   94-97
R/rtables_access.R                            38       0  100.00%
R/score_occurrences.R                         20       1  95.00%   124
R/split_cols_by_groups.R                      49       0  100.00%
R/stat.R                                      59       0  100.00%
R/summarize_ancova.R                         150       2  98.67%   327-328
R/summarize_change.R                          72       3  95.83%   175, 177-178
R/summarize_colvars.R                         13       1  92.31%   75
R/summarize_coxreg.R                         172       0  100.00%
R/summarize_glm_count.R                      269      10  96.28%   129-130, 202-203, 459-463, 596
R/summarize_num_patients.R                   121      10  91.74%   122-124, 244, 248, 252-253, 337-338, 340
R/summarize_patients_exposure_in_cols.R      155       7  95.48%   58, 232-233, 237, 357-358, 362
R/survival_biomarkers_subgroups.R            136      10  92.65%   117-122, 228-231
R/survival_coxph_pairwise.R                  124       5  95.97%   52-53, 248, 250-251
R/survival_duration_subgroups.R              245      15  93.88%   124-129, 268-273, 286, 288-289
R/survival_time.R                            120       1  99.17%   251
R/survival_timepoint.R                       153       2  98.69%   302, 304
R/utils_checkmate.R                           68       0  100.00%
R/utils_default_stats_formats_labels.R       196       0  100.00%
R/utils_factor.R                              87       1  98.85%   99
R/utils_ggplot.R                             110       0  100.00%
R/utils_grid.R                               126       5  96.03%   164, 279-286
R/utils_rtables.R                            125       9  92.80%   39, 46, 405-406, 528-532
R/utils_split_funs.R                          52       2  96.15%   82, 94
R/utils.R                                    141       7  95.04%   118, 121, 124, 128, 137-138, 332
TOTAL                                      11956     580  95.15%

Diff against main

Filename                                  Stmts    Miss  Cover
--------------------------------------  -------  ------  --------
R/utils_default_stats_formats_labels.R       +2       0  +100.00%
TOTAL                                        +2       0  +0.00%

Results for commit: af43f7a

Minimum allowed coverage is 80%

♻️ This comment has been updated with latest results

Copy link
Contributor

@Melkiades Melkiades left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lgtm! Do you think we need something similar for the other similar functions?

@edelarua edelarua merged commit 50b73fd into main May 15, 2025
26 checks passed
@edelarua edelarua deleted the 1419_formats_warning branch May 15, 2025 14:08
@github-actions github-actions bot locked and limited conversation to collaborators May 15, 2025
@edelarua
Copy link
Contributor Author

Lgtm! Do you think we need something similar for the other similar functions?

It doesn't seem to be an issue in the other functions as far as I can tell. The formats function is the only one that applies a NULL default after processing

@Melkiades
Copy link
Contributor

Lgtm! Do you think we need something similar for the other similar functions?

It doesn't seem to be an issue in the other functions as far as I can tell. The formats function is the only one that applies a NULL default after processing

I understand! Thanks for the fix ;)

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.

Labels

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Fix warning from get_formats_from_stats()

3 participants