Skip to content
This repository was archived by the owner on Dec 18, 2024. It is now read-only.
This repository was archived by the owner on Dec 18, 2024. It is now read-only.

Title: Question about DPT model performance and network size adjustments #95

@JunhyeongDoyle

Description

@JunhyeongDoyle

Hi, first of all, thank you for sharing the code and resources with the community! I’ve been experimenting with the four pretrained models provided in the repository to extract depth maps. While testing, I adjusted the network size parameters (net_h, net_w) and observed that increasing these values seemed to improve the detail in the depth estimation, especially in more complex regions of the images.

However, I have a concern that increasing these values too much might lead to a trade-off where the model focuses too heavily on local features at the cost of global geometric consistency across the image. I would like to know your thoughts on this hypothesis: Could increasing the network size cause a decrease in global geometric coherence?

Additionally, for processing images with a resolution of 1920x1080, I aim to achieve a dense depth map without geometric inconsistencies. Could you recommend which of the four pretrained weights would be best suited for this task? And, based on your experience, what would be an optimal setting for net_h and net_w to balance detail and global consistency?

Thanks again for your help and for providing this fantastic tool!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions