- U-Net [https://arxiv.org/pdf/1505.04597.pdf]
- https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ [Caffe + Matlab]
- https://github.com/jocicmarko/ultrasound-nerve-segmentation [Keras]
- https://github.com/EdwardTyantov/ultrasound-nerve-segmentation [Keras]
- https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model [Keras]
- https://github.com/yihui-he/u-net [Keras]
- https://github.com/jakeret/tf_unet [Tensorflow]
- https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb [Tensorflow]
- https://github.com/divamgupta/image-segmentation-keras [Keras]
- SegNet [https://arxiv.org/pdf/1511.00561.pdf]
- https://github.com/alexgkendall/caffe-segnet [Caffe]
- https://github.com/developmentseed/caffe/tree/segnet-multi-gpu [Caffe]
- https://github.com/preddy5/segnet [Keras]
- https://github.com/imlab-uiip/keras-segnet [Keras]
- https://github.com/andreaazzini/segnet [Tensorflow]
- https://github.com/fedor-chervinskii/segnet-torch [Torch]
- https://github.com/0bserver07/Keras-SegNet-Basic [Keras]
- https://github.com/tkuanlun350/Tensorflow-SegNet [Tensorflow]
- https://github.com/divamgupta/image-segmentation-keras [Keras]
- DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
- https://bitbucket.org/deeplab/deeplab-public/ [Caffe]
- https://github.com/cdmh/deeplab-public [Caffe]
- https://bitbucket.org/aquariusjay/deeplab-public-ver2 [Caffe]
- https://github.com/TheLegendAli/DeepLab-Context [Caffe]
- https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab [MXNet]
- https://github.com/DrSleep/tensorflow-deeplab-resnet [Tensorflow]
- Fully-Convolutional Network (FCN) [https://arxiv.org/pdf/1605.06211.pdf]
- https://github.com/vlfeat/matconvnet-fcn [MatConvNet]
- https://github.com/shelhamer/fcn.berkeleyvision.org [Caffe]
- https://github.com/MarvinTeichmann/tensorflow-fcn [Tensorflow]
- https://github.com/aurora95/Keras-FCN [Keras]
- https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras [Keras]
- https://github.com/k3nt0w/FCN_via_keras [Keras]
- https://github.com/shekkizh/FCN.tensorflow [Tensorflow]
- https://github.com/seewalker/tf-pixelwise [Tensorflow]
- https://github.com/divamgupta/image-segmentation-keras [Keras]
- ENet [https://arxiv.org/pdf/1606.02147.pdf]
- LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
- https://github.com/e-lab/LinkNet [Torch]
- DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
- Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
- DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
- PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
- ICNet [https://arxiv.org/pdf/1704.08545.pdf]
- https://github.com/hszhao/ICNet [Caffe]
- Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
- https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
- https://github.com/jasjeetIM/Mask-RCNN [Caffe]
- ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
- DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
- RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
- https://github.com/guosheng/refinenet [MatConvNet]
- PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
- https://github.com/hszhao/PSPNet [Caffe]
- CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
- Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
- FCIS [https://arxiv.org/pdf/1611.07709.pdf]
- https://github.com/msracver/FCIS [MxNet]
- DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
- MNC [https://arxiv.org/pdf/1512.04412.pdf]
-
Keras
-
TensorFlow
-
Caffe
-
torch
-
MXNet
-
Simultaneous detection and segmentation
-
Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation
-
Learning to Propose Objects
-
Nonparametric Scene Parsing via Label Transfer
-
Other
- https://github.com/cvlab-epfl/densecrf
- http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/
- http://www.philkr.net/home/densecrf
- http://graphics.stanford.edu/projects/densecrf/
- https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb
- https://github.com/jliemansifry/super-simple-semantic-segmentation
- http://users.cecs.anu.edu.au/~jdomke/JGMT/
- https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset
- https://github.com/tpeng/python-crfsuite
- https://github.com/chokkan/crfsuite
- https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline
- https://github.com/lucasb-eyer/pydensecrf
- https://github.com/fvisin/reseg
- https://github.com/bernard24/RIS
- https://github.com/martinkersner/train-CRF-RNN
- https://github.com/NP-coder/CLPS1520Project [Tensorflow]
- https://github.com/renmengye/rec-attend-public [Tensorflow]
-
DIGITS
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
- http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
- apache/mxnet#1514
- https://github.com/orobix/retina-unet
- https://github.com/fvisin/reseg
- https://github.com/yulequan/melanoma-recognition
- http://www.andrewjanowczyk.com/use-case-1-nuclei-segmentation/
- https://github.com/junyanz/MCILBoost
- https://github.com/imlab-uiip/lung-segmentation-2d
- https://github.com/scottykwok/cervix-roi-segmentation-by-unet
- https://github.com/WeidiXie/cell_counting_v2
-
Cascaded-FCN
-
Keras
-
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)
-
Papers:
-
Data:
- https://github.com/mshivaprakash/sat-seg-thesis
- https://github.com/KGPML/Hyperspectral
- https://github.com/lopuhin/kaggle-dstl
- https://github.com/mitmul/ssai
- https://github.com/mitmul/ssai-cnn
- https://github.com/azavea/raster-vision
- https://github.com/MarvinTeichmann/MultiNet
- https://github.com/MarvinTeichmann/KittiSeg
- https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]
- https://github.com/AKSHAYUBHAT/ImageSegmentation
- https://github.com/kyamagu/js-segment-annotator
- https://github.com/CSAILVision/LabelMeAnnotationTool
- https://github.com/seanbell/opensurfaces-segmentation-ui
- https://github.com/lzx1413/labelImgPlus
- https://github.com/wkentaro/labelme
- Dice coefficient
- Jaccard loss
- sigmoid + binary crossentropy
- softmax + categorical crossentropy
- Stanford Background Dataset
- Sift Flow Dataset
- Barcelona Dataset
- Microsoft COCO dataset
- MSRC Dataset
- LITS Liver Tumor Segmentation Dataset
- KITTI
- Stanford background dataset
- Data from Games dataset
- Human parsing dataset
- Silenko person database
- Mapillary Vistas Dataset
- Microsoft AirSim
- keras-team/keras#6538
- https://github.com/warmspringwinds/tensorflow_notes
- https://github.com/meetshah1995/pytorch-semseg
- https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
- https://github.com/desimone/segmentation-models
- mrgloom#1
- https://github.com/nightrome/really-awesome-semantic-segmentation
- https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
- http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/
- https://github.com/MichaelXin/Awesome-Caffe#23-image-segmentation
- https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
- http://www.andrewjanowczyk.com/efficient-pixel-wise-deep-learning-on-large-images/
- https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/
- https://github.com/NVIDIA/DIGITS/tree/master/examples/binary-segmentation
- https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation