Skip to content

itzmishra/test

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sound-Based Engine Fault Detection Using Machine Learning

License: MIT Python Status

Overview

This project develops a sound-based fault detection system for internal combustion engines using machine learning. Engine sounds are recorded, processed, and classified as healthy or faulty (e.g., misfire). The goal is a non-invasive, low-cost, near-real-time diagnostic tool for automotive maintenance.

Table of Contents

Objectives

  • Detect and classify engine faults from audio signals.
  • Apply signal processing and ML techniques for accurate prediction.
  • Provide an accessible diagnostic alternative to expensive tools.

System Workflow

  1. Data Acquisition
    • Recordings from a Ford EcoSport engine: 20 samples (15 healthy, 5 misfire).
  2. Preprocessing & Denoising
    • Filtering, segmentation, normalization.
  3. Feature Extraction
    • MFCC, DWT, SWT, cepstrum, spectral centroid, chroma, bispectrum.
  4. Model Training & Evaluation
    • Algorithms: Random Forest, SVM, simple CNN.
    • Metrics: Accuracy, Precision, Recall, F1-score.
  5. Prediction
    • Real-time inference pipeline for audio input.

Technologies

  • Python 3.x
  • NumPy, Pandas
  • Librosa, PyWavelets
  • Scikit-learn
  • TensorFlow / Keras (optional for deep learning)
  • Matplotlib

Setup & Installation

# clone repository
git clone https://github.com/<your-username>/<repo-name>.git
cd <repo-name>

# create virtual environment (recommended)
python -m venv venv
# activate venv:
# Windows: venv\Scripts\activate
# macOS/Linux: source venv/bin/activate

pip install --upgrade pip
pip install -r requirements.txt

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published