Skip to content

Governance-first knowledge infrastructure for AI agents

License

Notifications You must be signed in to change notification settings

j-w-code/AgentKB-public

Repository files navigation

AgentKB

Governance-first knowledge infrastructure for AI agents.


The Core Thesis

AGENTS = PRINCIPALS

AI agents operating on enterprise data require the same governance controls as human employees:

  • Access Control — Who can see what
  • Output Control — What can be said externally
  • Audit Trail — Who did what, when

Most AI security focuses only on access. AgentKB addresses all three.


What AgentKB Does

AgentKB provides governance infrastructure for AI agents:

  1. Access Control — Scope what agents can read by role and sensitivity [Phase 3]
  2. Output Gate — Block PII, secrets, and unverifiable claims before disclosure [Available]
  3. Audit Logging — Every gate decision logged for compliance [Available]
  4. Claim Validation — Enforce evidence requirements for factual claims [Available]

Architecture: Two-Gate Model

┌──────────────────────────────────────────────────────────┐
│                    KNOWLEDGE BASE                         │
│         (Content with sensitivity markers)                │
└────────────────────┬─────────────────────────────────────┘
                     │
                     ▼
┌──────────────────────────────────────────────────────────┐
│                 ACCESS GATE (Phase 3)                     │
│   • Filters content BEFORE agent sees it                 │
│   • RBAC: Role → Content scoping                         │
│   • Prevents sensitive data reaching LLM provider        │
└────────────────────┬─────────────────────────────────────┘
                     │
                     ▼
                   AGENT
                     │
                     ▼
┌──────────────────────────────────────────────────────────┐
│                 OUTPUT GATE (Available)                   │
│   • Scans agent outputs before disclosure                │
│   • PII/secret detection, claim validation               │
│   • Governance Compliance Score (GCS) enforcement        │
└────────────────────┬─────────────────────────────────────┘
                     │
                     ▼
                  OUTPUT

Two-Gate Protection

Input Side (Phase 3): Access control filters content before it reaches the agent/LLM provider. Agents only see what their role permits.

Output Side (Available): Output gate validates agent responses before disclosure. Blocks PII, secrets, and unverifiable claims.

Together: Defense-in-depth for enterprise AI.


Use Cases

  • Enterprise AI Assistants — Prevent confidential data leakage
  • Multi-tenant Systems — Scope agent knowledge by customer/role
  • Compliance Environments — Audit what agents accessed and disclosed
  • Agentic Applications — Governance middleware for LLM pipelines

Framework Alignment & Compliance

AgentKB governance primitives align with:

  • NIST AI RMF 1.0 — Strong (3/4 functions)
  • OWASP Agentic Top 10 (2026) — Strong (8/10 categories)
  • Therac-25 / Ariane 5 Benchmark — Strong (4.7/5 categories)
  • Gartner AI TRiSM — Strong (3/5 pyramid layers)
  • Proofpoint AI Security — Strong (4/5 requirements)

Compliance Support

Standard AgentKB Support
HIPAA PII detection, audit logging, sensitivity classification
SOX Immutable audit trail, role-based access, governance versioning
GDPR Data classification, output filtering, consent-aware scoping

Current Status

Phase 1-2.10.1 Public Release (v0.5.3)

Phase Focus Status
Phase 1 Output Gate MVP ✅ Complete
Phase 2 Audit + GCS + Evidence ✅ Complete
Phase 2.5-2.7 Structural Enforcement (3-tier detection, Audit Bus) ✅ Complete
Phase 2.9 Foundation Hardening (adversarial tests, locale patterns) ✅ Complete
Phase 2.9.5 Four Operational Modes (gate independence) ✅ Complete
Phase 3 Access Control (RBAC enforcement) 🔒 Private
Phase 4 Enterprise (IdP, SDKs, Dashboard) 🔒 Private

⚠️ Public Baseline: This release is frozen at Phase 2.9.5. Phases 3+ continue in private development. See ROADMAP.md for licensing details.

What's New in v0.5.3

  • Audit Attribution Origin Field (Phase 2.10): Every audit event now includes context.origin identifying the action source:
    • human_cli — Human via CLI commands
    • agent_mcp — Agent via MCP tools
    • system_http — System via REST API
    • Additional types: human_http, agent_llm, system_cron, system_internal
  • Session Correlation (Phase 2.10.1): origin.session_id now populated for attribution correlation:
    • API: Uses existing session ID
    • CLI: Generates ephemeral session ID per invocation
    • MCP: Generates ephemeral session ID per tool call
  • MCP Audit Logging: MCP tools now log to audit trail (was missing in prior releases)

Test Coverage: 671 tests passing • 67% code coverage • GCS 100

What was new in v0.5.2
  • Four Operational Modes: FULL, SOLO-OG, SOLO-AG, ISLAND — gates can operate independently
  • GCS Matrix: Unified compliance structure with two temporal dimensions
  • AccessGate primitive: Input validation with nested ToolInvocationGate
  • Audit metrics API: Structured metrics (blocks/day, rule coverage)
  • Locale-aware PII: Regional pattern configurations
  • Adversarial test corpus: Encoding attacks, prompt injection, tool exfiltration
  • E2E benchmark: p95 latency 78.6ms (NFR: <3000ms)

Available now: CLI (16 commands), REST API (8 endpoints), MCP server (3 tools), multi-provider LLM support.


Getting Started

🚀 New to AgentKB? Start with the Quick Start Guide — get running in ~10 minutes with zero Python experience required.

📖 Already comfortable with Python? Jump to the User Guide for the full command reference.

Installation

Download the wheel for your platform from GitHub Releases:

Platform Filename
Windows agentkb-*-cp312-cp312-win_amd64.whl
Linux agentkb-*-cp312-cp312-manylinux*.whl
macOS agentkb-*-cp312-cp312-macosx*.whl

Then install:

pip install agentkb-0.5.3-cp312-cp312-<your-platform>.whl

Quick Start

agentkb init        # Initialize workspace
agentkb doctor      # Verify setup
agentkb gate --text "Hello world"  # Test output gate

License

Source-Available. See LICENSE for details.

  • ✅ View, modify, run for development/testing
  • ✅ Evaluate before commitment
  • ❌ Production use requires commercial license

Contact

J.W. — Founder
📧 agentkb_jw@proton.me
🐦 @HSThurston (Hermes Thurston — Creative Collaborator)

  • Commercial licensing inquiries
  • Design partner opportunities
  • Technical feedback

Built for a world where AI agents are principals, not just tools.

About

Governance-first knowledge infrastructure for AI agents

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •